BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2658464)

  • 1. Osseointegration of metallic implants. I. Light microscopy in the rabbit.
    Linder L
    Acta Orthop Scand; 1989 Apr; 60(2):129-34. PubMed ID: 2658464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osseointegration of metallic implants. II. Transmission electron microscopy in the rabbit.
    Linder L; Obrant K; Boivin G
    Acta Orthop Scand; 1989 Apr; 60(2):135-9. PubMed ID: 2658465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of stainless steel, titanium and Vitallium in bone.
    Linder L; Lundskog J
    Injury; 1975 May; 6(4):277-85. PubMed ID: 1095476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces.
    Albrektsson T; Hansson HA
    Biomaterials; 1986 May; 7(3):201-5. PubMed ID: 3521751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants.
    Johansson CB; Sennerby L; Albrektsson T
    Int J Oral Maxillofac Implants; 1991; 6(4):437-41. PubMed ID: 1820312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of bone to titanium, stainless steel and chrome/cobalt implants.
    Linder L
    Rev Chir Orthop Reparatrice Appar Mot; 1988; 74 Suppl 2():351-2. PubMed ID: 3068722
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of bulk versus particulate titanium and cobalt chrome alloy implanted into the rabbit tibia.
    Goodman SB; Fornasier VL; Lee J; Kei J
    J Biomed Mater Res; 1990 Nov; 24(11):1539-49. PubMed ID: 2279985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of fixation materials in the brain.
    Mofid MM; Thompson RC; Pardo CA; Manson PN; Vander Kolk CA
    Plast Reconstr Surg; 1997 Jul; 100(1):14-20; discussion 21-2. PubMed ID: 9207654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.
    Brown RN; Sexton BE; Gabriel Chu TM; Katona TR; Stewart KT; Kyung HM; Liu SS
    Am J Orthod Dentofacial Orthop; 2014 Apr; 145(4):496-504. PubMed ID: 24703288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vivo comparison of the Ni-free steel X13CrMnMoN18-14-3 and titanium alloy implants in rabbit femora - A promising steel for orthopedic surgery.
    Kauther MD; Gödde K; Burggraf M; Hilken G; Wissmann A; Krüger C; Lask S; Jung O; Mitevski B; Fischer A; Dudda M; Behr B; Herten M
    J Biomed Mater Res B Appl Biomater; 2021 Jun; 109(6):797-807. PubMed ID: 33166074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nicotine administration on different implant surfaces: a histometric study in rabbits.
    Stefani CM; Nogueira F; Sallum EA; de TS; Sallum AW; Nociti FH
    J Periodontol; 2002 Feb; 73(2):206-12. PubMed ID: 11895287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the soft tissue interface at titanium implants with different surface treatments: experimental study on rabbits.
    Ungersböck A; Pohler O; Perren SM
    Biomed Mater Eng; 1994; 4(4):317-25. PubMed ID: 7950879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model.
    Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S
    J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of polyoxymethylene (Delrin) in bone.
    Ohlin A; Linder L
    Biomaterials; 1993; 14(4):285-9. PubMed ID: 8476998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone response to a titanium aluminium nitride coating on metallic implants.
    Freeman CO; Brook IM
    J Mater Sci Mater Med; 2006 May; 17(5):465-70. PubMed ID: 16688587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits.
    Piattelli M; Scarano A; Paolantonio M; Iezzi G; Petrone G; Piattelli A
    J Oral Implantol; 2002; 28(1):2-8. PubMed ID: 12498456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys.
    Lemons JE; Niemann KM; Weiss AB
    J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on the osseointegration of titanium implants incorporating calcium-magnesium: a resonance frequency and histomorphometric analysis in rabbit tibia.
    Gehrke SA; Maté Sánchez de Val JE; Fernández Domínguez M; de Aza Moya PN; Gómez Moreno G; Calvo Guirado JL
    Clin Oral Implants Res; 2018 Jul; 29(7):785-791. PubMed ID: 27381553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium metals form direct bonding to bone after alkali and heat treatments.
    Nishiguchi S; Kato H; Fujita H; Oka M; Kim HM; Kokubo T; Nakamura T
    Biomaterials; 2001 Sep; 22(18):2525-33. PubMed ID: 11516085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.