These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26584889)

  • 21. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition.
    Pautler M; Tanaka W; Hirano HY; Jackson D
    Plant Cell Physiol; 2013 Mar; 54(3):302-12. PubMed ID: 23411664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shoot apical meristem and plant body organization: a cross-species comparative study.
    Schnablová R; Herben T; Klimešová J
    Ann Bot; 2017 Nov; 120(5):833-843. PubMed ID: 29136411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.
    Scanlon MJ
    Plant Physiol; 2003 Oct; 133(2):597-605. PubMed ID: 14500790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Putting genes on the map: Spatial transcriptomics of the maize shoot apical meristem.
    Zhang W
    Plant Physiol; 2022 Mar; 188(4):1931-1932. PubMed ID: 35355051
    [No Abstract]   [Full Text] [Related]  

  • 25. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution.
    Nardmann J; Werr W
    Mol Biol Evol; 2006 Dec; 23(12):2492-504. PubMed ID: 16987950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How boundaries control plant development.
    Žádníková P; Simon R
    Curr Opin Plant Biol; 2014 Feb; 17():116-25. PubMed ID: 24507503
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Zhang D; Sun W; Singh R; Zheng Y; Cao Z; Li M; Lunde C; Hake S; Zhang Z
    Plant Cell; 2018 Feb; 30(2):360-374. PubMed ID: 29437990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem.
    Higo A; Saihara N; Miura F; Higashi Y; Yamada M; Tamaki S; Ito T; Tarutani Y; Sakamoto T; Fujiwara M; Kurata T; Fukao Y; Moritoh S; Terada R; Kinoshita T; Ito T; Kakutani T; Shimamoto K; Tsuji H
    Nat Commun; 2020 Aug; 11(1):4079. PubMed ID: 32796936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1.
    Giulini A; Wang J; Jackson D
    Nature; 2004 Aug; 430(7003):1031-4. PubMed ID: 15329722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy.
    Yang F; Bui HT; Pautler M; Llaca V; Johnston R; Lee BH; Kolbe A; Sakai H; Jackson D
    Plant Cell; 2015 Jan; 27(1):121-31. PubMed ID: 25616873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize.
    Cui Z; Luo J; Qi C; Ruan Y; Li J; Zhang A; Yang X; He Y
    BMC Genomics; 2016 Nov; 17(1):946. PubMed ID: 27871222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular basis of shoot apical meristem development.
    Traas J; Doonan JH
    Int Rev Cytol; 2001; 208():161-206. PubMed ID: 11510568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RAGGED SEEDLING2 is required for expression of KANADI2 and REVOLUTA homologues in the maize shoot apex.
    Henderson DC; Zhang X; Brooks L; Scanlon MJ
    Genesis; 2006 Aug; 44(8):372-82. PubMed ID: 16858691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome study outlines ontogeny of the maize shoot apical meristem.
    Eckardt NA
    Plant Cell; 2012 Aug; 24(8):3169. PubMed ID: 22932673
    [No Abstract]   [Full Text] [Related]  

  • 35. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
    Dodsworth S
    Dev Biol; 2009 Dec; 336(1):1-9. PubMed ID: 19782675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits.
    Je BI; Gruel J; Lee YK; Bommert P; Arevalo ED; Eveland AL; Wu Q; Goldshmidt A; Meeley R; Bartlett M; Komatsu M; Sakai H; Jönsson H; Jackson D
    Nat Genet; 2016 Jul; 48(7):785-91. PubMed ID: 27182966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits.
    Knauer S; Javelle M; Li L; Li X; Ma X; Wimalanathan K; Kumari S; Johnston R; Leiboff S; Meeley R; Schnable PS; Ware D; Lawrence-Dill C; Yu J; Muehlbauer GJ; Scanlon MJ; Timmermans MCP
    Genome Res; 2019 Dec; 29(12):1962-1973. PubMed ID: 31744902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent.
    Wu L; Wang X; Wang S; Wu L; Tian L; Tian Z; Liu P; Chen Y
    Sci Rep; 2016 Jul; 6():30641. PubMed ID: 27468931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot.
    Alexander DL; Mellor EA; Langdale JA
    Plant Physiol; 2005 Jul; 138(3):1396-408. PubMed ID: 15980185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits.
    Wu Q; Regan M; Furukawa H; Jackson D
    PLoS Genet; 2018 Apr; 14(4):e1007374. PubMed ID: 29708966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.