BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26584917)

  • 1. Phosphopeptide Enrichment by Covalent Chromatography After Solid Phase Derivatization of Protein Digests on Reversed Phase Supports.
    Nika H; Angeletti RH; Hawke DH
    Methods Mol Biol; 2016; 1355():31-50. PubMed ID: 26584917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphopeptide enrichment by covalent chromatography after derivatization of protein digests immobilized on reversed-phase supports.
    Nika H; Nieves E; Hawke DH; Angeletti RH
    J Biomol Tech; 2013 Sep; 24(3):154-77. PubMed ID: 23997662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():123-33. PubMed ID: 26584922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the β-elimination/michael addition chemistry on reversed-phase supports for mass spectrometry analysis of O-linked protein modifications.
    Nika H; Nieves E; Hawke DH; Angeletti RH
    J Biomol Tech; 2013 Sep; 24(3):132-53. PubMed ID: 23997661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphopeptide characterization by mass spectrometry using reversed-phase supports for solid-phase β-elimination/Michael addition.
    Nika H; Lee J; Willis IM; Angeletti RH; Hawke DH
    J Biomol Tech; 2012 Jul; 23(2):51-68. PubMed ID: 22951960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable Digestion Strategies for Phosphoproteomics Analysis.
    Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP
    Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview.
    Batalha ÍL; Roque AC
    Methods Mol Biol; 2016; 1355():193-209. PubMed ID: 26584927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EJMS protocol: systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based phosphopeptide stability estimations?
    Eickner T; Mikkat S; Lorenz P; Sklorz M; Zimmermann R; Thiesen HJ; Glocker MO
    Eur J Mass Spectrom (Chichester); 2011; 17(5):507-23. PubMed ID: 22173543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity.
    Jersie-Christensen RR; Sultan A; Olsen JV
    Methods Mol Biol; 2016; 1355():251-60. PubMed ID: 26584931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Direct Kinase Substrates via Kinase Assay-Linked Phosphoproteomics.
    Xue L; Arrington JV; Tao WA
    Methods Mol Biol; 2016; 1355():263-73. PubMed ID: 26584932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial beta-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis.
    Ahn YH; Park EJ; Cho K; Kim JY; Ha SH; Ryu SH; Yoo JS
    Rapid Commun Mass Spectrom; 2004; 18(20):2495-501. PubMed ID: 15384178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of TiO(2)-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry.
    Ahn YH; Ji ES; Lee JY; Cho K; Yoo JS
    Rapid Commun Mass Spectrom; 2007; 21(24):3987-94. PubMed ID: 18000841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests.
    Ruprecht B; Zecha J; Zolg DP; Kuster B
    Methods Mol Biol; 2017; 1550():83-98. PubMed ID: 28188525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis.
    Schlosser A; Vanselow JT; Kramer A
    Anal Chem; 2005 Aug; 77(16):5243-50. PubMed ID: 16097765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphopeptide modification and enrichment by oxidation-reduction condensation.
    Warthaka M; Karwowska-Desaulniers P; Pflum MK
    ACS Chem Biol; 2006 Dec; 1(11):697-701. PubMed ID: 17184134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new maleimide-bound acid-cleavable solid-support reagent for profiling phosphorylation.
    Chowdhury SM; Munske GR; Siems WF; Bruce JE
    Rapid Commun Mass Spectrom; 2005; 19(7):899-909. PubMed ID: 15739244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.