BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26584926)

  • 1. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation.
    Engholm-Keller K; Larsen MR
    Methods Mol Biol; 2016; 1355():161-77. PubMed ID: 26584925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online LC-FAIMS-MS/MS for the Analysis of Phosphorylation in Proteins.
    Zhao H; Creese AJ; Cooper HJ
    Methods Mol Biol; 2016; 1355():241-50. PubMed ID: 26584930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Direct Kinase Substrates via Kinase Assay-Linked Phosphoproteomics.
    Xue L; Arrington JV; Tao WA
    Methods Mol Biol; 2016; 1355():263-73. PubMed ID: 26584932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).
    Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1355():85-101. PubMed ID: 26584920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment Strategies in Phosphoproteomics.
    Leitner A
    Methods Mol Biol; 2016; 1355():105-21. PubMed ID: 26584921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable Digestion Strategies for Phosphoproteomics Analysis.
    Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP
    Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity.
    Jersie-Christensen RR; Sultan A; Olsen JV
    Methods Mol Biol; 2016; 1355():251-60. PubMed ID: 26584931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():123-33. PubMed ID: 26584922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Offline pentafluorophenyl (PFP)-RP prefractionation as an alternative to high-pH RP for comprehensive LC-MS/MS proteomics and phosphoproteomics.
    Grassetti AV; Hards R; Gerber SA
    Anal Bioanal Chem; 2017 Jul; 409(19):4615-4625. PubMed ID: 28555341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Protocol to Simultaneously Study Protein Phosphorylation, Acetylation, and N-Linked Sialylated Glycosylation.
    Melo-Braga MN; Ibáñez-Vea M; Kulej K; Larsen MR
    Methods Mol Biol; 2021; 2261():55-72. PubMed ID: 33420984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Direct Kinase Substrates Using Analogue-Sensitive Alleles.
    Rothenberg DA; Gordon EA; White FM; Lourido S
    Methods Mol Biol; 2016; 1355():71-84. PubMed ID: 26584919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Phosphoproteomic Analysis of Brain Tissues.
    Bai B; Tan H; Peng J
    Methods Mol Biol; 2017; 1598():199-211. PubMed ID: 28508362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.