BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26585330)

  • 61. [Glutathione plays an anti-oxidant role in Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of pH profiles on nisin fermentation coupling with foam separation.
    Liu W; Zheng H; Wu Z; Wang Y
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1401-7. PubMed ID: 19730846
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis.
    Oddone GM; Lan CQ; Rawsthorne H; Mills DA; Block DE
    Biotechnol Bioeng; 2007 Apr; 96(6):1127-38. PubMed ID: 17117427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [PH and oxidation-reduction potential change of environment during a growth of lactic acid bacteria: effects of oxidizers and reducers].
    Sogomonian D; Akopian K; Trchunian A
    Prikl Biokhim Mikrobiol; 2011; 47(1):33-8. PubMed ID: 21442918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans.
    Skory CD; Côté GL
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10001-10. PubMed ID: 26239071
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis.
    Molenaar D; Hagting A; Alkema H; Driessen AJ; Konings WN
    J Bacteriol; 1993 Sep; 175(17):5438-44. PubMed ID: 8366030
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.
    Li L; Ma Y
    J Dairy Sci; 2014 Oct; 97(10):5975-82. PubMed ID: 25064652
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.
    del Rio B; Linares DM; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):897-905. PubMed ID: 25341400
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using highly efficient nonlinear experimental design methods for optimization of Lactococcus lactis fermentation in chemically defined media.
    Zhang G; Block DE
    Biotechnol Prog; 2009; 25(6):1587-97. PubMed ID: 19725126
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of wild strains of Lactococcus lactis on the volatile profile and the sensory characteristics of ewes' raw milk cheese.
    Centeno JA; Tomillo FJ; Fernández-García E; Gaya P; Nuñez M
    J Dairy Sci; 2002 Dec; 85(12):3164-72. PubMed ID: 12512589
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Nisin formation by immobilized cells of the lactic acid bacterium, Streptococcus lactis].
    Egorov NS; Baranova IP; Kozlova IuI
    Antibiotiki; 1978 Oct; 23(10):872-4. PubMed ID: 30390
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Joint cultivation of Streptococcus lactis, LMU strain, and various species of yeasts].
    Egorov NS; Kozlova IuI; Baranova IP
    Antibiot Med Biotekhnol; 1985 Feb; 30(2):86-90. PubMed ID: 3923918
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
    Andersen AZ; Carvalho AL; Neves AR; Santos H; Kummer U; Olsen LF
    Comput Biol Chem; 2009 Feb; 33(1):71-83. PubMed ID: 18829387
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH.
    Magni C; de Mendoza D; Konings WN; Lolkema JS
    J Bacteriol; 1999 Mar; 181(5):1451-7. PubMed ID: 10049375
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Glucose metabolism and internal pH of Lactococcus lactis subsp. lactis cells utilizing NMR spectroscopy.
    Foucaud C; Herve M; Neumann JM; Hemme D
    Lett Appl Microbiol; 1995 Jul; 21(1):10-3. PubMed ID: 7662330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci.
    Zhang G; Mills DA; Block DE
    Appl Environ Microbiol; 2009 Feb; 75(4):1080-7. PubMed ID: 19074601
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of the probiotics Lactococcus lacttis (MTCC-440) on Salmonella enteric serovar Typhi in co-culture study.
    Kumar A; Kundu S; Debnath M
    Microb Pathog; 2018 Jul; 120():42-46. PubMed ID: 29704985
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon.
    Pedersen MB; Garrigues C; Tuphile K; Brun C; Vido K; Bennedsen M; Møllgaard H; Gaudu P; Gruss A
    J Bacteriol; 2008 Jul; 190(14):4903-11. PubMed ID: 18487342
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Experimental conditions affect the site of tetrazolium violet reduction in the electron transport chain of Lactococcus lactis.
    Tachon S; Michelon D; Chambellon E; Cantonnet M; Mezange C; Henno L; Cachon R; Yvon M
    Microbiology (Reading); 2009 Sep; 155(Pt 9):2941-2948. PubMed ID: 19520722
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.
    Bi J; Liu S; Du G; Chen J
    Biotechnol Lett; 2016 Apr; 38(4):659-65. PubMed ID: 26712369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.