These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26585330)

  • 81. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture.
    Papagianni M; Avramidis N; Filiousis G
    Microb Cell Fact; 2007 May; 6():16. PubMed ID: 17521452
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Conversion of methionine to methional by Lactococcus lactis.
    Amárita F; Fernández-Esplá D; Requena T; Pelaez C
    FEMS Microbiol Lett; 2001 Oct; 204(1):189-95. PubMed ID: 11682200
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Analysis and practical implementation of a model for combined growth and metabolite production of lactic acid bacteria.
    Vereecken KM; Van Impe JF
    Int J Food Microbiol; 2002 Mar; 73(2-3):239-50. PubMed ID: 11934032
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.
    Wang B; Zhang H; Liang D; Hao P; Li Y; Qiao J
    J Dairy Sci; 2017 Dec; 100(12):9532-9538. PubMed ID: 28987584
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Growth studies on the lactic streptococci. IV. Some observations on redox potential.
    Keen AR
    J Dairy Res; 1972 Feb; 39(1):161-5. PubMed ID: 4625579
    [No Abstract]   [Full Text] [Related]  

  • 86. Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis.
    Lunde M; Aastveit AH; Blatny JM; Nes IF
    Appl Environ Microbiol; 2005 Feb; 71(2):721-7. PubMed ID: 15691922
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Changes in acid tolerance of Lactococcus lactis during growth at constant pH.
    Alemayehu D; O'Sullivan E; Condon S
    Int J Food Microbiol; 2000 Apr; 55(1-3):215-21. PubMed ID: 10791746
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of Riboflavin.
    Chen J; Shen J; Solem C; Jensen PR
    Appl Environ Microbiol; 2013 Oct; 79(19):6140-7. PubMed ID: 23913422
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Regulation of the glutamate-glutamine transport system by intracellular pH in Streptococcus lactis.
    Poolman B; Hellingwerf KJ; Konings WN
    J Bacteriol; 1987 May; 169(5):2272-6. PubMed ID: 3106334
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for YATP (cell mass produced per mole of ATP) at their physiological pHs.
    Fiedler T; Bekker M; Jonsson M; Mehmeti I; Pritzschke A; Siemens N; Nes I; Hugenholtz J; Kreikemeyer B
    Appl Environ Microbiol; 2011 Jan; 77(2):612-7. PubMed ID: 21097579
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524.
    Trip H; Mulder NL; Lolkema JS
    J Biol Chem; 2012 Mar; 287(14):11195-204. PubMed ID: 22351775
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media.
    McIntyre DA; Harlander SK
    Appl Environ Microbiol; 1989 Oct; 55(10):2621-6. PubMed ID: 2513778
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Hydroxypropyl β-cyclodextrin improving multiple stresses tolerance of Lactococcus lactis subsp. lactis.
    Cui L; Lin S; Yi J; Liu X; Hao L; Ji Y; Lu L; Ji Z; Kang Q; Lu J
    J Food Sci; 2020 Jul; 85(7):2171-2176. PubMed ID: 32476148
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator.
    Molenaar D; Abee T; Konings WN
    Biochim Biophys Acta; 1991 Nov; 1115(1):75-83. PubMed ID: 1958707
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Combined proteomics and transcriptomics analysis of Lactococcus lactis under different culture conditions.
    Li L; Yang X; Hong R; Liu F
    J Dairy Sci; 2021 Mar; 104(3):2564-2580. PubMed ID: 33455780
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effect of sodium acetate on the adhesion to porcine gastric mucin in a Lactococcus lactis strain grown on fructose.
    Kimoto-Nira H; Moriya N; Yamasaki S; Takenaka A; Suzuki C
    Anim Sci J; 2016 Jun; 87(6):802-8. PubMed ID: 26302882
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer.
    Gu L; Xiao X; Zhao G; Kempen P; Zhao S; Liu J; Lee SY; Solem C
    Microb Biotechnol; 2023 Jun; 16(6):1277-1292. PubMed ID: 36860178
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Aerobic growth thermograms of Streptococcus lactis obtained with a complex medium containing glucose.
    Monk PR
    J Bacteriol; 1978 Aug; 135(2):373-8. PubMed ID: 98515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.