BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 26585361)

  • 1. Major histocompatibility complex linked databases and prediction tools for designing vaccines.
    Singh SP; Mishra BN
    Hum Immunol; 2016 Mar; 77(3):295-306. PubMed ID: 26585361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands.
    Reche PA; Reinherz EL
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W138-42. PubMed ID: 15980443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated modeling of the major events in the MHC class I antigen processing pathway.
    Dönnes P; Kohlbacher O
    Protein Sci; 2005 Aug; 14(8):2132-40. PubMed ID: 15987883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.
    Bhasin M; Raghava GP
    J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates.
    Paul S; Sidney J; Sette A; Peters B
    Curr Protoc Immunol; 2016 Aug; 114():18.19.1-18.19.24. PubMed ID: 27479659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.
    Bui HH; Sidney J; Dinh K; Southwood S; Newman MJ; Sette A
    BMC Bioinformatics; 2006 Mar; 7():153. PubMed ID: 16545123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New tools, new approaches and new ideas for vaccine development.
    De Groot AS; Moise L
    Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360
    [No Abstract]   [Full Text] [Related]  

  • 10. EpiToolKit--a web-based workbench for vaccine design.
    Schubert B; Brachvogel HP; Jürges C; Kohlbacher O
    Bioinformatics; 2015 Jul; 31(13):2211-3. PubMed ID: 25712691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy.
    Mitić NS; Pavlović MD; Jandrlić DR
    J Immunol Methods; 2014 Apr; 406():83-103. PubMed ID: 24614036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity.
    Oyarzún P; Ellis JJ; Bodén M; Kobe B
    BMC Bioinformatics; 2013 Feb; 14():52. PubMed ID: 23409948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are bacterial vaccine antigens T-cell epitope depleted?
    Halling-Brown M; Sansom CE; Davies M; Titball RW; Moss DS
    Trends Immunol; 2008 Aug; 29(8):374-9. PubMed ID: 18603471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of Usutu Virus E Protein B Cell and T Cell Epitopes for Potential Vaccine Development.
    Palanisamy N; Lennerstrand J
    Scand J Immunol; 2017 May; 85(5):350-364. PubMed ID: 28273384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SVRMHC prediction server for MHC-binding peptides.
    Wan J; Liu W; Xu Q; Ren Y; Flower DR; Li T
    BMC Bioinformatics; 2006 Oct; 7():463. PubMed ID: 17059589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T-cell epitope prediction using antigen processing constraints.
    Mettu RR; Charles T; Landry SJ
    J Immunol Methods; 2016 May; 432():72-81. PubMed ID: 26891811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.