BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 26585361)

  • 21. CD4+ T-cell epitope prediction using antigen processing constraints.
    Mettu RR; Charles T; Landry SJ
    J Immunol Methods; 2016 May; 432():72-81. PubMed ID: 26891811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools.
    Prachar M; Justesen S; Steen-Jensen DB; Thorgrimsen S; Jurgons E; Winther O; Bagger FO
    Sci Rep; 2020 Nov; 10(1):20465. PubMed ID: 33235258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():163-73. PubMed ID: 18449999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Antigenic B and T Cell Epitopes via Energy Decomposition Analysis: Description of the Web-Based Prediction Tool BEPPE.
    Peri C; Solé OC; Corrada D; Gori A; Daura X; Colombo G
    Methods Mol Biol; 2015; 1348():13-22. PubMed ID: 26424259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens.
    Mortier MC; Jongert E; Mettens P; Ruelle JL
    BMC Immunol; 2015 Oct; 16():63. PubMed ID: 26493839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HLAsupE: an integrated database of HLA supertype-specific epitopes to aid in the development of vaccines with broad coverage of the human population.
    Wang S; Guo L; Liu D; Liu W; Wu Y
    BMC Immunol; 2016 Jun; 17(1):17. PubMed ID: 27307005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors.
    Peters B; Bulik S; Tampe R; Van Endert PM; Holzhütter HG
    J Immunol; 2003 Aug; 171(4):1741-9. PubMed ID: 12902473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MHC-NP: predicting peptides naturally processed by the MHC.
    Giguère S; Drouin A; Lacoste A; Marchand M; Corbeil J; Laviolette F
    J Immunol Methods; 2013 Dec; 400-401():30-6. PubMed ID: 24144535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of MHC-peptide binding: a systematic and comprehensive overview.
    Lafuente EM; Reche PA
    Curr Pharm Des; 2009; 15(28):3209-20. PubMed ID: 19860671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PeMtb: A Database of MHC Antigenic Peptide of Mycobacterium tuberculosis.
    Zia Q; Azhar A; Ahmad S; Afsar M; Hasan Z; Owais M; Alam M; Akbar S; Ganash M; Ashraf GM; Zubair S; Aliev G
    Curr Pharm Biotechnol; 2017 Nov; 18(8):648-652. PubMed ID: 28914198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Searching and mapping of T-cell epitopes, MHC binders, and TAP binders.
    Bhasin M; Lata S; Raghava GP
    Methods Mol Biol; 2007; 409():95-112. PubMed ID: 18449994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunoinformatics and Epitope Prediction.
    Ramana J; Mehla K
    Methods Mol Biol; 2020; 2131():155-171. PubMed ID: 32162252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MAPPP: MHC class I antigenic peptide processing prediction.
    Hakenberg J; Nussbaum AK; Schild H; Rammensee HG; Kuttler C; Holzhütter HG; Kloetzel PM; Kaufmann SH; Mollenkopf HJ
    Appl Bioinformatics; 2003; 2(3):155-8. PubMed ID: 15130801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and Screening of an Antigen-Derived Peptide Library Displayed on Yeast Cell Surface for CD4+ T Cell Epitope Identification.
    Wen F; Smith MR; Zhao H
    Methods Mol Biol; 2019; 2024():213-234. PubMed ID: 31364052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods and protocols for prediction of immunogenic epitopes.
    Tong JC; Tan TW; Ranganathan S
    Brief Bioinform; 2007 Mar; 8(2):96-108. PubMed ID: 17077136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data.
    Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW
    Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ProPred1: prediction of promiscuous MHC Class-I binding sites.
    Singh H; Raghava GP
    Bioinformatics; 2003 May; 19(8):1009-14. PubMed ID: 12761064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development.
    Dikhit MR; Ansari MY; Vijaymahantesh ; Kalyani ; Mansuri R; Sahoo BR; Dehury B; Amit A; Topno RK; Sahoo GC; Ali V; Bimal S; Das P
    Infect Genet Evol; 2016 Nov; 45():187-197. PubMed ID: 27590716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.