BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26585389)

  • 1. Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation.
    Ahl V; Keller H; Schmidt S; Weichenrieder O
    Mol Cell; 2015 Dec; 60(5):715-727. PubMed ID: 26585389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and assembly of the Alu domain of the mammalian signal recognition particle.
    Weichenrieder O; Wild K; Strub K; Cusack S
    Nature; 2000 Nov; 408(6809):167-73. PubMed ID: 11089964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.
    Weichenrieder O; Stehlin C; Kapp U; Birse DE; Timmins PA; Strub K; Cusack S
    RNA; 2001 May; 7(5):731-40. PubMed ID: 11350037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14.
    Birse DE; Kapp U; Strub K; Cusack S; Aberg A
    EMBO J; 1997 Jul; 16(13):3757-66. PubMed ID: 9233785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation.
    Soni K; Kempf G; Manalastas-Cantos K; Hendricks A; Flemming D; Guizetti J; Simon B; Frischknecht F; Svergun DI; Wild K; Sinning I
    Commun Biol; 2021 May; 4(1):600. PubMed ID: 34017052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation.
    Bousset L; Mary C; Brooks MA; Scherrer A; Strub K; Cusack S
    RNA; 2014 Dec; 20(12):1955-62. PubMed ID: 25336584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the signal recognition particle interacting with the elongation-arrested ribosome.
    Halic M; Becker T; Pool MR; Spahn CM; Grassucci RA; Frank J; Beckmann R
    Nature; 2004 Feb; 427(6977):808-14. PubMed ID: 14985753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle.
    Brooks MA; Ravelli RB; McCarthy AA; Strub K; Cusack S
    Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):421-33. PubMed ID: 19390147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain.
    Huck L; Scherrer A; Terzi L; Johnson AE; Bernstein HD; Cusack S; Weichenrieder O; Strub K
    Nucleic Acids Res; 2004; 32(16):4915-24. PubMed ID: 15383645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure.
    Strub K; Fornallaz M; Bui N
    RNA; 1999 Oct; 5(10):1333-47. PubMed ID: 10573124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition.
    Terzi L; Pool MR; Dobberstein B; Strub K
    Biochemistry; 2004 Jan; 43(1):107-17. PubMed ID: 14705936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits.
    Ivanova E; Berger A; Scherrer A; Alkalaeva E; Strub K
    Nucleic Acids Res; 2015 Mar; 43(5):2874-87. PubMed ID: 25697503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions.
    Beckert B; Kedrov A; Sohmen D; Kempf G; Wild K; Sinning I; Stahlberg H; Wilson DN; Beckmann R
    Nat Struct Mol Biol; 2015 Oct; 22(10):767-73. PubMed ID: 26344568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA gymnastics in mammalian signal recognition particle assembly.
    Wild K; Sinning I
    RNA Biol; 2014; 11(11):1330-4. PubMed ID: 25692231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain.
    Van Nues RW; Brown JD
    RNA; 2004 Jan; 10(1):75-89. PubMed ID: 14681587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle.
    Thomas Y; Bui N; Strub K
    Nucleic Acids Res; 1997 May; 25(10):1920-9. PubMed ID: 9115358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the complete bacterial SRP Alu domain.
    Kempf G; Wild K; Sinning I
    Nucleic Acids Res; 2014 Oct; 42(19):12284-94. PubMed ID: 25270875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs.
    Bovia F; Fornallaz M; Leffers H; Strub K
    Mol Biol Cell; 1995 Apr; 6(4):471-84. PubMed ID: 7542942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an early protein-RNA assembly complex of the signal recognition particle.
    Wild K; Sinning I; Cusack S
    Science; 2001 Oct; 294(5542):598-601. PubMed ID: 11641499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14.
    Chang DY; Newitt JA; Hsu K; Bernstein HD; Maraia RJ
    Nucleic Acids Res; 1997 Mar; 25(6):1117-22. PubMed ID: 9092618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.