These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 26585389)
1. Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation. Ahl V; Keller H; Schmidt S; Weichenrieder O Mol Cell; 2015 Dec; 60(5):715-727. PubMed ID: 26585389 [TBL] [Abstract][Full Text] [Related]
2. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Wild K; Strub K; Cusack S Nature; 2000 Nov; 408(6809):167-73. PubMed ID: 11089964 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Stehlin C; Kapp U; Birse DE; Timmins PA; Strub K; Cusack S RNA; 2001 May; 7(5):731-40. PubMed ID: 11350037 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. Birse DE; Kapp U; Strub K; Cusack S; Aberg A EMBO J; 1997 Jul; 16(13):3757-66. PubMed ID: 9233785 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Soni K; Kempf G; Manalastas-Cantos K; Hendricks A; Flemming D; Guizetti J; Simon B; Frischknecht F; Svergun DI; Wild K; Sinning I Commun Biol; 2021 May; 4(1):600. PubMed ID: 34017052 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. Bousset L; Mary C; Brooks MA; Scherrer A; Strub K; Cusack S RNA; 2014 Dec; 20(12):1955-62. PubMed ID: 25336584 [TBL] [Abstract][Full Text] [Related]
7. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Halic M; Becker T; Pool MR; Spahn CM; Grassucci RA; Frank J; Beckmann R Nature; 2004 Feb; 427(6977):808-14. PubMed ID: 14985753 [TBL] [Abstract][Full Text] [Related]
8. Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle. Brooks MA; Ravelli RB; McCarthy AA; Strub K; Cusack S Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):421-33. PubMed ID: 19390147 [TBL] [Abstract][Full Text] [Related]
9. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Huck L; Scherrer A; Terzi L; Johnson AE; Bernstein HD; Cusack S; Weichenrieder O; Strub K Nucleic Acids Res; 2004; 32(16):4915-24. PubMed ID: 15383645 [TBL] [Abstract][Full Text] [Related]
10. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. Strub K; Fornallaz M; Bui N RNA; 1999 Oct; 5(10):1333-47. PubMed ID: 10573124 [TBL] [Abstract][Full Text] [Related]
11. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Terzi L; Pool MR; Dobberstein B; Strub K Biochemistry; 2004 Jan; 43(1):107-17. PubMed ID: 14705936 [TBL] [Abstract][Full Text] [Related]
12. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Ivanova E; Berger A; Scherrer A; Alkalaeva E; Strub K Nucleic Acids Res; 2015 Mar; 43(5):2874-87. PubMed ID: 25697503 [TBL] [Abstract][Full Text] [Related]
13. Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Beckert B; Kedrov A; Sohmen D; Kempf G; Wild K; Sinning I; Stahlberg H; Wilson DN; Beckmann R Nat Struct Mol Biol; 2015 Oct; 22(10):767-73. PubMed ID: 26344568 [TBL] [Abstract][Full Text] [Related]
14. RNA gymnastics in mammalian signal recognition particle assembly. Wild K; Sinning I RNA Biol; 2014; 11(11):1330-4. PubMed ID: 25692231 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain. Van Nues RW; Brown JD RNA; 2004 Jan; 10(1):75-89. PubMed ID: 14681587 [TBL] [Abstract][Full Text] [Related]
16. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Thomas Y; Bui N; Strub K Nucleic Acids Res; 1997 May; 25(10):1920-9. PubMed ID: 9115358 [TBL] [Abstract][Full Text] [Related]
17. Structure of the complete bacterial SRP Alu domain. Kempf G; Wild K; Sinning I Nucleic Acids Res; 2014 Oct; 42(19):12284-94. PubMed ID: 25270875 [TBL] [Abstract][Full Text] [Related]
18. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Bovia F; Fornallaz M; Leffers H; Strub K Mol Biol Cell; 1995 Apr; 6(4):471-84. PubMed ID: 7542942 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Wild K; Sinning I; Cusack S Science; 2001 Oct; 294(5542):598-601. PubMed ID: 11641499 [TBL] [Abstract][Full Text] [Related]
20. A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Chang DY; Newitt JA; Hsu K; Bernstein HD; Maraia RJ Nucleic Acids Res; 1997 Mar; 25(6):1117-22. PubMed ID: 9092618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]