These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 26585446)
1. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Egamberdieva D; Li L; Lindström K; Räsänen LA Appl Microbiol Biotechnol; 2016 Mar; 100(6):2829-41. PubMed ID: 26585446 [TBL] [Abstract][Full Text] [Related]
2. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Egamberdieva D; Wirth S; Li L; Abd-Allah EF; Lindström K Bioengineered; 2017 Jul; 8(4):433-438. PubMed ID: 27780398 [TBL] [Abstract][Full Text] [Related]
3. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. Zhang W; Xie Z; Wang L; Li M; Lang D; Zhang X J Plant Res; 2017 May; 130(3):611-624. PubMed ID: 28290079 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Xie W; Hao Z; Zhou X; Jiang X; Xu L; Wu S; Zhao A; Zhang X; Chen B Mycorrhiza; 2018 Apr; 28(3):285-300. PubMed ID: 29455337 [TBL] [Abstract][Full Text] [Related]
6. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Zhang X; Zhang W; Lang D; Cui J; Li Y Environ Sci Pollut Res Int; 2018 Sep; 25(26):25916-25932. PubMed ID: 29961225 [TBL] [Abstract][Full Text] [Related]
7. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. Brígido C; Nascimento FX; Duan J; Glick BR; Oliveira S FEMS Microbiol Lett; 2013 Dec; 349(1):46-53. PubMed ID: 24152202 [TBL] [Abstract][Full Text] [Related]
8. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Li L; Mohamad OAA; Ma J; Friel AD; Su Y; Wang Y; Musa Z; Liu Y; Hedlund BP; Li W Antonie Van Leeuwenhoek; 2018 Oct; 111(10):1735-1748. PubMed ID: 29516314 [TBL] [Abstract][Full Text] [Related]
9. La (NO Jia T; Gu J; Ma M BMC Plant Biol; 2024 Oct; 24(1):926. PubMed ID: 39367329 [TBL] [Abstract][Full Text] [Related]
10. Integrative physiology and transcriptome reveal salt-tolerance differences between two licorice species: Ion transport, Casparian strip formation and flavonoids biosynthesis. Li X; Xu Y; Zhang J; Xu K; Zheng X; Luo J; Lu J BMC Plant Biol; 2024 Apr; 24(1):272. PubMed ID: 38605293 [TBL] [Abstract][Full Text] [Related]
11. Exogenous betaine enhances salt tolerance of Glycyrrhiza uralensis through multiple pathways. Dong X; Ma X; Zhao Z; Ma M BMC Plant Biol; 2024 Mar; 24(1):165. PubMed ID: 38431542 [TBL] [Abstract][Full Text] [Related]
12. Root-associated endophytic bacterial community composition and structure of three medicinal licorices and their changes with the growing year. Dang H; Zhang T; Li G; Mu Y; Lv X; Wang Z; Zhuang L BMC Microbiol; 2020 Sep; 20(1):291. PubMed ID: 32957914 [TBL] [Abstract][Full Text] [Related]
13. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na Shen Z; Pu X; Wang S; Dong X; Cheng X; Cheng M Sci Rep; 2022 Mar; 12(1):5089. PubMed ID: 35332196 [TBL] [Abstract][Full Text] [Related]
14. Chickpea (Cicer arietinum L.) as model legume for decoding the co-existence of Pseudomonas fluorescens and Mesorhizobium sp. as bio-fertilizer under diverse agro-climatic zones. Nagpal S; Sharma P; Sirari A; Kumawat KC; Wati L; Gupta SC; Mandahal KS Microbiol Res; 2021 Jun; 247():126720. PubMed ID: 33592359 [TBL] [Abstract][Full Text] [Related]
15. Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. Bouhmouch I; Souad-Mouhsine B; Brhada F; Aurag J J Plant Physiol; 2005 Oct; 162(10):1103-13. PubMed ID: 16255168 [TBL] [Abstract][Full Text] [Related]
16. Global transcriptional response to salt shock of the plant microsymbiont Mesorhizobium loti MAFF303099. Laranjo M; Alexandre A; Oliveira S Res Microbiol; 2017 Jan; 168(1):55-63. PubMed ID: 27481227 [TBL] [Abstract][Full Text] [Related]
17. Rhizobialide: a new stearolactone produced by Mesorhizobium sp. CCNWGX022, a rhizobial endophyte from Glycyrrhiza uralensis. Wei GH; Yang XY; Zhang JW; Gao JM; Ma YQ; Fu YY; Wang P Chem Biodivers; 2007 May; 4(5):893-8. PubMed ID: 17510984 [TBL] [Abstract][Full Text] [Related]
18. Enhanced salt tolerance in Xiao J; Xiao J; Gao P; Zhang Y; Yan B; Wu H; Zhang Y Microbiol Spectr; 2024 Oct; 12(10):e0381223. PubMed ID: 39189758 [TBL] [Abstract][Full Text] [Related]
19. [Effect of drought stress on growth of Glycyrrhiza uralensis]. Liu CL; Wang WQ; Li SY; Cui JR Zhongguo Zhong Yao Za Zhi; 2004 Oct; 29(10):931-4. PubMed ID: 15631073 [TBL] [Abstract][Full Text] [Related]
20. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Chang P; Gerhardt KE; Huang XD; Yu XM; Glick BR; Gerwing PD; Greenberg BM Int J Phytoremediation; 2014; 16(7-12):1133-47. PubMed ID: 24933907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]