These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26585636)
21. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. Wang T; Wang R; Cheng Y; Sun J ACS Appl Mater Interfaces; 2016 Apr; 8(14):9297-304. PubMed ID: 26895474 [TBL] [Abstract][Full Text] [Related]
22. Elastomer-infiltrated vertically aligned carbon nanotube film-based wavy-configured stretchable conductors. Shin UH; Jeong DW; Kim SH; Lee HW; Kim JM ACS Appl Mater Interfaces; 2014 Aug; 6(15):12909-14. PubMed ID: 25006992 [TBL] [Abstract][Full Text] [Related]
23. Stretchable electronics based on Ag-PDMS composites. Larmagnac A; Eggenberger S; Janossy H; Vörös J Sci Rep; 2014 Dec; 4():7254. PubMed ID: 25434843 [TBL] [Abstract][Full Text] [Related]
24. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Duan Y; Huang Y; Yin Z; Bu N; Dong W Nanoscale; 2014 Mar; 6(6):3289-95. PubMed ID: 24509570 [TBL] [Abstract][Full Text] [Related]
25. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Woo JY; Kim KK; Lee J; Kim JT; Han CS Nanotechnology; 2014 Jul; 25(28):285203. PubMed ID: 24971604 [TBL] [Abstract][Full Text] [Related]
26. S- to X-Band Stretchable Inductors and Filters for Gigahertz Soft and Epidermal Electronics. Lan Y; Zhang H; Min S; Kim D; Gong S; Katehi L; Xu Y; Ma Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25053-25063. PubMed ID: 34018738 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network. Lin L; Liu S; Fu S; Zhang S; Deng H; Fu Q Small; 2013 Nov; 9(21):3620-9. PubMed ID: 23630114 [TBL] [Abstract][Full Text] [Related]
28. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360 [TBL] [Abstract][Full Text] [Related]
30. Stretchable and Directly Patternable Double-Layer Structure Electrodes with Complete Coverage. Bang J; Ahn J; Zhang J; Ko TH; Park B; Lee YM; Jung BK; Lee SY; Ok J; Kim BH; Kim TI; Choi JI; Lee CH; Oh SJ ACS Nano; 2022 Aug; 16(8):12134-12144. PubMed ID: 35925652 [TBL] [Abstract][Full Text] [Related]
31. Highly Robust Neutral Plane Oxide TFTs Withstanding 0.25 mm Bending Radius for Stretchable Electronics. Kim YH; Lee E; Um JG; Mativenga M; Jang J Sci Rep; 2016 May; 6():25734. PubMed ID: 27165715 [TBL] [Abstract][Full Text] [Related]
32. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Park J; Kim J; Kim K; Kim SY; Cheong WH; Park K; Song JH; Namgoong G; Kim JJ; Heo J; Bien F; Park JU Nanoscale; 2016 May; 8(20):10591-7. PubMed ID: 27166976 [TBL] [Abstract][Full Text] [Related]
33. Highly Stretchable PPy/PDMS Strain Sensors Fabricated with Multi-Step Oxygen Plasma Treatment. Muhammad W; Kim SD Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050328 [TBL] [Abstract][Full Text] [Related]
34. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network. Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456 [TBL] [Abstract][Full Text] [Related]
36. High-Adhesion Stretchable Electrode via Cross-Linking Intensified Electroless Deposition on a Biomimetic Elastomeric Micropore Film. Wu C; Tang X; Gan L; Li W; Zhang J; Wang H; Qin Z; Zhang T; Zhou T; Huang J; Xie C; Zeng D ACS Appl Mater Interfaces; 2019 Jun; 11(22):20535-20544. PubMed ID: 31081609 [TBL] [Abstract][Full Text] [Related]
37. Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Polywka A; Stegers L; Krauledat O; Riedl T; Jakob T; Görrn P Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335296 [TBL] [Abstract][Full Text] [Related]
38. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings. Guo H; Tang J; Qian K; Tsoukalas D; Zhao M; Yang J; Zhang B; Chou X; Liu J; Xue C; Zhang W Sci Rep; 2016 Mar; 6():23606. PubMed ID: 27005493 [TBL] [Abstract][Full Text] [Related]
39. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Jeong SH; Hjort K; Wu Z Sci Rep; 2015 Feb; 5():8419. PubMed ID: 25673261 [TBL] [Abstract][Full Text] [Related]
40. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Huang X; Liu Y; Chen K; Shin WJ; Lu CJ; Kong GW; Patnaik D; Lee SH; Cortes JF; Rogers JA Small; 2014 Aug; 10(15):3083-90. PubMed ID: 24706477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]