These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26585740)

  • 1. A Cable-Shaped Lithium Sulfur Battery.
    Fang X; Weng W; Ren J; Peng H
    Adv Mater; 2016 Jan; 28(3):491-6. PubMed ID: 26585740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnO
    Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries.
    Moon S; Jung YH; Jung WK; Jung DS; Choi JW; Kim DK
    Adv Mater; 2013 Dec; 25(45):6547-53. PubMed ID: 24018843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.
    Elazari R; Salitra G; Garsuch A; Panchenko A; Aurbach D
    Adv Mater; 2011 Dec; 23(47):5641-4. PubMed ID: 22052740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
    Shu C; Li B; Zhang B; Su D
    ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.
    Guo J; Xu Y; Wang C
    Nano Lett; 2011 Oct; 11(10):4288-94. PubMed ID: 21928817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.
    Hu W; Hirota Y; Zhu Y; Yoshida N; Miyamoto M; Zheng T; Nishiyama N
    ChemSusChem; 2017 Sep; 10(18):3557-3564. PubMed ID: 28707784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.
    He B; Li WC; Yang C; Wang SQ; Lu AH
    ACS Nano; 2016 Jan; 10(1):1633-9. PubMed ID: 26736137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WO
    Lee SK; Kim H; Bang S; Myung ST; Sun YK
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33450880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.
    Lee SH; Sridhar V; Jung JH; Karthikeyan K; Lee YS; Mukherjee R; Koratkar N; Oh IK
    ACS Nano; 2013 May; 7(5):4242-51. PubMed ID: 23550743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.
    Fu K; Yildiz O; Bhanushali H; Wang Y; Stano K; Xue L; Zhang X; Bradford PD
    Adv Mater; 2013 Sep; 25(36):5109-14. PubMed ID: 23907770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.