These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26585825)

  • 1. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids.
    Chang CC; Rodriguez J; Ross J
    G3 (Bethesda); 2015 Nov; 6(1):209-19. PubMed ID: 26585825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis.
    Haddad R; Meter B; Ross JA
    Front Genet; 2018; 9():481. PubMed ID: 30505316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paternal Mitochondrial Transmission in Intra-Species Caenorhabditis briggsae Hybrids.
    Ross JA; Howe DK; Coleman-Hulbert A; Denver DR; Estes S
    Mol Biol Evol; 2016 Dec; 33(12):3158-3160. PubMed ID: 27613821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong selective effects of mitochondrial DNA on the nuclear genome.
    Healy TM; Burton RS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6616-6621. PubMed ID: 32156736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of mitonuclear incompatibilities in allopatric speciation.
    Burton RS
    Cell Mol Life Sci; 2022 Jan; 79(2):103. PubMed ID: 35091831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pervasive Mitonuclear Coadaptation Underlies Fast Development in Interpopulation Hybrids of a Marine Crustacean.
    Han KL; Barreto FS
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33502469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.
    Ross JA; Koboldt DC; Staisch JE; Chamberlin HM; Gupta BP; Miller RD; Baird SE; Haag ES
    PLoS Genet; 2011 Jul; 7(7):e1002174. PubMed ID: 21779179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model.
    Fierst JL; Hansen TF
    Evolution; 2010 Mar; 64(3):675-93. PubMed ID: 19817852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities.
    Pereira RJ; Lima TG; Pierce-Ward NT; Chao L; Burton RS
    Mol Ecol; 2021 Dec; 30(23):6403-6416. PubMed ID: 34003535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic incompatibilities in reciprocal hybrids between populations of Tigriopus californicus with low to moderate mitochondrial sequence divergence.
    Healy TM; Burton RS
    Evolution; 2023 Sep; 77(9):2100-2108. PubMed ID: 37407024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome-Wide Impacts on the Expression of Incompatibilities in Hybrids of Tigriopus californicus.
    Willett CS; Lima TG; Kovaleva I; Hatfield L
    G3 (Bethesda); 2016 Jun; 6(6):1739-49. PubMed ID: 27172190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid dysfunction and physiological compensation in gene expression.
    Barreto FS; Pereira RJ; Burton RS
    Mol Biol Evol; 2015 Mar; 32(3):613-22. PubMed ID: 25415967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus.
    Ellison CK; Burton RS
    Evolution; 2006 Jul; 60(7):1382-91. PubMed ID: 16929655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitonuclear interactions impact aerobic metabolism in hybrids and may explain mitonuclear discordance in young, naturally hybridizing bird lineages.
    McDiarmid CS; Hooper DM; Stier A; Griffith SC
    Mol Ecol; 2024 Jun; 33(12):e17374. PubMed ID: 38727686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay.
    Velazco-Cruz L; Ross JA
    PLoS One; 2022; 17(8):e0272843. PubMed ID: 35951524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila.
    Hoekstra LA; Siddiq MA; Montooth KL
    Genetics; 2013 Nov; 195(3):1129-39. PubMed ID: 24026098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muller's Ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution.
    Howe DK; Denver DR
    BMC Evol Biol; 2008 Feb; 8():62. PubMed ID: 18302772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread genomic incompatibilities in Caenorhabditis elegans.
    Snoek LB; Orbidans HE; Stastna JJ; Aartse A; Rodriguez M; Riksen JA; Kammenga JE; Harvey SC
    G3 (Bethesda); 2014 Aug; 4(10):1813-23. PubMed ID: 25128438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
    Mossman JA; Biancani LM; Zhu CT; Rand DM
    Genetics; 2016 May; 203(1):463-84. PubMed ID: 26966258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.