BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26586044)

  • 41. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous xylose fermentation by Clostridium acetobutylicum--Assessment of solventogenic kinetics.
    Procentese A; Raganati F; Olivieri G; Russo ME; Salatino P; Marzocchella A
    Bioresour Technol; 2015 Sep; 192():142-8. PubMed ID: 26025352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum.
    Schaffer S; Isci N; Zickner B; Dürre P
    Electrophoresis; 2002 Jan; 23(1):110-21. PubMed ID: 11824611
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
    Nie X; Yang B; Zhang L; Gu Y; Yang S; Jiang W; Yang C
    Mol Microbiol; 2016 Apr; 100(2):289-302. PubMed ID: 26691835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.
    Guan W; Shi S; Tu M; Lee YY
    Bioresour Technol; 2016 Jan; 200():713-21. PubMed ID: 26562687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems.
    Patakova P; Linhova M; Rychtera M; Paulova L; Melzoch K
    Biotechnol Adv; 2013; 31(1):58-67. PubMed ID: 22306328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.
    Yu Y; Tangney M; Aass HC; Mitchell WJ
    Appl Environ Microbiol; 2007 Mar; 73(6):1842-50. PubMed ID: 17209069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum.
    Jin L; Zhang H; Chen L; Yang C; Yang S; Jiang W; Gu Y
    J Biotechnol; 2014 Mar; 173():7-9. PubMed ID: 24412407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production.
    Bankar SB; Survase SA; Ojamo H; Granström T
    Bioresour Technol; 2013 Jul; 140():269-76. PubMed ID: 23708785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.
    Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W
    Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
    Voigt C; Bahl H; Fischer RJ
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7161-72. PubMed ID: 24841119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.
    Bankar SB; Survase SA; Singhal RS; Granström T
    Bioresour Technol; 2012 Feb; 106():110-6. PubMed ID: 22197332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum.
    Bai X; Ji Z
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):201-11. PubMed ID: 22627760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum.
    Dürre P; Böhringer M; Nakotte S; Schaffer S; Thormann K; Zickner B
    J Mol Microbiol Biotechnol; 2002 May; 4(3):295-300. PubMed ID: 11931561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis.
    Tracy BP; Jones SW; Papoutsakis ET
    J Bacteriol; 2011 Mar; 193(6):1414-26. PubMed ID: 21217008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose.
    Sund CJ; Liu S; Germane KL; Servinsky MD; Gerlach ES; Hurley MM
    Microbiology (Reading); 2015 Feb; 161(Pt 2):430-440. PubMed ID: 25481877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792.
    Winzer K; Lorenz K; Zickner B; Dürre P
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):531-41. PubMed ID: 11075929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering Clostridium acetobutylicum for alcohol production.
    Hou X; Peng W; Xiong L; Huang C; Chen X; Chen X; Zhang W
    J Biotechnol; 2013 Jun; 166(1-2):25-33. PubMed ID: 23651949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein Acetylation and Butyrylation Regulate the Phenotype and Metabolic Shifts of the Endospore-forming
    Xu JY; Xu Z; Liu X; Tan M; Ye BC
    Mol Cell Proteomics; 2018 Jun; 17(6):1156-1169. PubMed ID: 29523768
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.