These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 26586150)
21. Three-Layer Sulfur Cathode with a Conductive Material-Free Middle Layer. Kang J; Park JW; Kim S; Jung Y J Nanosci Nanotechnol; 2020 Aug; 20(8):4943-4948. PubMed ID: 32126679 [TBL] [Abstract][Full Text] [Related]
22. Vertical-Aligned Li Wang D; Xia X; Wang Y; Xie D; Zhong Y; Wu J; Wang X; Tu J Chemistry; 2017 Aug; 23(46):11169-11174. PubMed ID: 28653777 [TBL] [Abstract][Full Text] [Related]
23. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. Sun L; Kong W; Li M; Wu H; Jiang K; Li Q; Zhang Y; Wang J; Fan S Nanotechnology; 2016 Feb; 27(7):075401. PubMed ID: 26778739 [TBL] [Abstract][Full Text] [Related]
24. Novel Polyaniline-Silver-Sulfur Nanotube Composite as Cathode Material for Lithium-Sulfur Battery. Wang J; Xu RW; Wang CZ; Xiong JP Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771965 [TBL] [Abstract][Full Text] [Related]
25. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. Cao S; Feng X; Song Y; Xue X; Liu H; Miao M; Fang J; Shi L ACS Appl Mater Interfaces; 2015 May; 7(20):10695-701. PubMed ID: 25938940 [TBL] [Abstract][Full Text] [Related]
26. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes. Li M; Carter R; Douglas A; Oakes L; Pint CL ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494 [TBL] [Abstract][Full Text] [Related]
27. Self-Supported FeCo Guo B; Bandaru S; Dai C; Chen H; Zhang Y; Xu Q; Bao S; Chen M; Xu M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43707-43715. PubMed ID: 30480423 [TBL] [Abstract][Full Text] [Related]
28. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469 [TBL] [Abstract][Full Text] [Related]
29. Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li-S Batteries. Gao P; Xu S; Chen Z; Huang X; Bao Z; Lao C; Wu G; Mei Y ACS Appl Mater Interfaces; 2018 Jan; 10(4):3938-3947. PubMed ID: 29309733 [TBL] [Abstract][Full Text] [Related]
30. Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. Zhu X; Li Y; Li R; Tu K; Li J; Xie Z; Lei J; Liu D; Qu D J Colloid Interface Sci; 2020 Feb; 559():244-253. PubMed ID: 31630017 [TBL] [Abstract][Full Text] [Related]
31. CeF Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987 [TBL] [Abstract][Full Text] [Related]
32. Efficient Encapsulation of Small S Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical fabrication and evaluation of a self-standing carbon nanotube/carbon fiber composite electrode for lithium-ion batteries. Liu YH; Lin HH; Tsai TY; Hsu CH RSC Adv; 2019 Oct; 9(57):33117-33123. PubMed ID: 35529149 [TBL] [Abstract][Full Text] [Related]
34. Facile Synthesis of rGO/g-C Wang J; Meng Z; Yang W; Yan X; Guo R; Han WQ ACS Appl Mater Interfaces; 2019 Jan; 11(1):819-827. PubMed ID: 30516040 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries. Li H; Sun L; Wang Z; Zhang Y; Tan T; Wang G; Bakenov Z Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29373525 [TBL] [Abstract][Full Text] [Related]
36. Plasma Treatment for Nitrogen-Doped 3D Graphene Framework by a Conductive Matrix with Sulfur for High-Performance Li-S Batteries. Duan L; Zhao L; Cong H; Zhang X; Lü W; Xue C Small; 2019 Feb; 15(7):e1804347. PubMed ID: 30663214 [TBL] [Abstract][Full Text] [Related]
37. An Integrated Structural Air Electrode Based on Parallel Porous Nitrogen-Doped Carbon Nanotube Arrays for Rechargeable Li-Air Batteries. Li Y; Zhang Z; Duan D; Han Y; Wang K; Hao X; Wang J; Liu S; Wu F Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623370 [TBL] [Abstract][Full Text] [Related]
38. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries. Reitz C; Breitung B; Schneider A; Wang D; von der Lehr M; Leichtweiss T; Janek J; Hahn H; Brezesinski T ACS Appl Mater Interfaces; 2016 Apr; 8(16):10274-82. PubMed ID: 26867115 [TBL] [Abstract][Full Text] [Related]
39. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. Chen L; Liu Y; Zhang F; Liu C; Shaw LL ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481 [TBL] [Abstract][Full Text] [Related]