These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26586174)

  • 1. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis).
    Hecht AM; Braun BC; Krause E; Voigt CC; Greenwood AD; Czirják GÁ
    Sci Rep; 2015 Nov; 5():16604. PubMed ID: 26586174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats.
    Blažek J; Zukal J; Bandouchova H; Berková H; Kovacova V; Martínková N; Pikula J; Řehák Z; Škrabánek P; Bartonička T
    J Therm Biol; 2019 May; 82():150-156. PubMed ID: 31128642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans.
    Fritze M; Puechmaille SJ; Costantini D; Fickel J; Voigt CC; Czirják GÁ
    Dev Comp Immunol; 2021 Jun; 119():104017. PubMed ID: 33476670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach.
    Zhang Y; Pan YH; Yin Q; Yang T; Dong D; Liao CC; Zhang S
    J Proteomics; 2014 Jun; 105():266-84. PubMed ID: 24434588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans.
    Hecht-Höger AM; Braun BC; Krause E; Meschede A; Krahe R; Voigt CC; Greenwood AD; Czirják GÁ
    Mol Ecol; 2020 May; 29(9):1745-1755. PubMed ID: 32279365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.
    Jani A; Orlicky DJ; Karimpour-Fard A; Epperson LE; Russell RL; Hunter LE; Martin SL
    Physiol Genomics; 2012 Jul; 44(14):717-27. PubMed ID: 22643061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis.
    Yin Q; Zhang Y; Dong D; Lei M; Zhang S; Liao CC; Pan YH
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1004-1019. PubMed ID: 28473298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis).
    Wojciechowski MS; Jefimow M; Tegowska E
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):828-40. PubMed ID: 16891137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome.
    Turner JM; Warnecke L; Wilcox A; Baloun D; Bollinger TK; Misra V; Willis CK
    Physiol Behav; 2015 Mar; 140():71-8. PubMed ID: 25484358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.
    Czenze ZJ; Jonasson KA; Willis CKR
    Physiol Biochem Zool; 2017; 90(4):502-511. PubMed ID: 28641050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lean Mass Dynamics in Hibernating Bats and Implications for Energy and Water Budgets.
    McGuire LP; Fuller NW; Haase CG; Silas KA; Olson SH
    Physiol Biochem Zool; 2022; 95(4):317-325. PubMed ID: 35617095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.
    Hindle AG; Martin SL
    PLoS One; 2013; 8(8):e71627. PubMed ID: 23951209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.
    Hindle AG; Grabek KR; Epperson LE; Karimpour-Fard A; Martin SL
    Physiol Genomics; 2014 May; 46(10):348-61. PubMed ID: 24642758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.
    Moore MS; Reichard JD; Murtha TD; Zahedi B; Fallier RM; Kunz TH
    PLoS One; 2011; 6(11):e27430. PubMed ID: 22140440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome.
    Mayberry HW; McGuire LP; Willis CKR
    J Comp Physiol B; 2018 Mar; 188(2):333-343. PubMed ID: 28766065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term patterns of cave-exiting activity of hibernating bats in western North America.
    Whiting JC; Doering B; Aho K; Rich J
    Sci Rep; 2021 Apr; 11(1):8175. PubMed ID: 33854126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Winter energetics of female Indiana bats Myotis sodalis.
    Day KM; Tomasi TE
    Physiol Biochem Zool; 2014; 87(1):56-64. PubMed ID: 24457921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus).
    Czenze ZJ; Willis CK
    J Comp Physiol B; 2015 Jul; 185(5):575-86. PubMed ID: 25809999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming up for dinner: torpor and arousal in hibernating Natterer's bats (Myotis nattereri) studied by radio telemetry.
    Hope PR; Jones G
    J Comp Physiol B; 2012 May; 182(4):569-78. PubMed ID: 22124860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of the FK506 binding protein 1B to hibernation in bats.
    Liu D; Zheng S; Zheng G; Lv Q; Shen B; Yuan X; Pan YH
    Cryobiology; 2018 Aug; 83():1-8. PubMed ID: 30056853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.