These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26586470)

  • 1. Facile Installation of 2-Reverse Prenyl Functionality into Indoles by a Tandem N-Alkylation-Aza-Cope Rearrangement Reaction and Its Application in Synthesis.
    Chen X; Fan H; Zhang S; Yu C; Wang W
    Chemistry; 2016 Jan; 22(2):716-23. PubMed ID: 26586470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox-catalyzed diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indole derivatives.
    Chang X; Zhang F; Zhu S; Yang Z; Feng X; Liu Y
    Nat Commun; 2023 Jun; 14(1):3876. PubMed ID: 37391418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 2,6,7-Trisubstituted Prenylated indole.
    Shiozawa M; Iida K; Odagi M; Yamanaka M; Nagasawa K
    J Org Chem; 2018 Jul; 83(13):7276-7280. PubMed ID: 29516739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total Synthesis of (+)-okaramine J featuring an exceptionally facile N-reverse-prenyl to C-prenyl aza-Claisen rearrangement.
    Roe JM; Webster RA; Ganesan A
    Org Lett; 2003 Aug; 5(16):2825-7. PubMed ID: 12889884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids.
    Zi W; Zuo Z; Ma D
    Acc Chem Res; 2015 Mar; 48(3):702-11. PubMed ID: 25667972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential rearrangements in the reaction catalyzed by the indole prenyltransferase FtmPT1.
    Mahmoodi N; Tanner ME
    Chembiochem; 2013 Oct; 14(15):2029-37. PubMed ID: 24014462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioselective cope rearrangement and prenyl transfers on indole scaffold mimicking fungal and bacterial dimethylallyltryptophan synthases.
    Thandavamurthy K; Sharma D; Porwal SK; Ray D; Viswanathan R
    J Org Chem; 2014 Nov; 79(21):10049-67. PubMed ID: 25244629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of diversely functionalized hexahydropyrrolo[2,3-b]indoles using domino reactions, olefination, isomerization and Claisen rearrangement followed by reductive cyclization.
    Kawasaki T; Ogawa A; Terashima R; Saheki T; Ban N; Sekiguchi H; Sakaguchi KE; Sakamoto M
    J Org Chem; 2005 Apr; 70(8):2957-66. PubMed ID: 15822954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromatic Aza-Claisen Rearrangement of Arylpropargylammonium Salts Generated in situ from Arynes and Tertiary Propargylamines.
    Han L; Li SJ; Zhang XT; Tian SK
    Chemistry; 2021 Feb; 27(9):3091-3097. PubMed ID: 33205537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective iridium catalyzed α-alkylation of azlactones by a tandem asymmetric allylic alkylation/aza-Cope rearrangement.
    Bai XD; Zhang QF; He Y
    Chem Commun (Camb); 2019 May; 55(39):5547-5550. PubMed ID: 30993284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal-catalyzed asymmetric allylic dearomatization reactions.
    Zhuo CX; Zheng C; You SL
    Acc Chem Res; 2014 Aug; 47(8):2558-73. PubMed ID: 24940612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A formal total synthesis of (-)-FR901483, using a tandem cationic aza-Cope rearrangement/Mannich cyclization approach.
    Brummond KM; Hong SP
    J Org Chem; 2005 Feb; 70(3):907-16. PubMed ID: 15675848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc chloride-catalyzed cyclizative 1,2-rearrangement enables facile access to morpholinones bearing aza-quaternary carbons.
    Li XZ; He YP; Wu H
    Commun Chem; 2023 Oct; 6(1):216. PubMed ID: 37805578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and alkylation of aza-glycinyl dipeptide building blocks.
    Garcia-Ramos Y; Lubell WD
    J Pept Sci; 2013 Dec; 19(12):725-9. PubMed ID: 24203503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revitalizing the aromatic aza-Claisen rearrangement: implications for the mechanism of 'on-water' catalysis.
    Beare KD; McErlean CS
    Org Biomol Chem; 2013 Apr; 11(15):2452-9. PubMed ID: 23426607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy.
    Wang B; Tu YQ
    Acc Chem Res; 2011 Nov; 44(11):1207-22. PubMed ID: 21728380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BiBr
    Cheng WF; Ma S; Lai YT; Cheung YT; Akkarasereenon K; Zhou Y; Tong R
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202311671. PubMed ID: 37724977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, development, mechanistic elucidation, and rational optimization of a tandem Ireland Claisen/Cope rearrangement reaction for rapid access to the (iso)cyclocitrinol core.
    Plummer CW; Wei CS; Yozwiak CE; Soheili A; Smithback SO; Leighton JL
    J Am Chem Soc; 2014 Jul; 136(28):9878-81. PubMed ID: 24967720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of competing N-H insertion and Wolff rearrangement in dirhodium(II)-catalyzed reactions of 3-indolyl diazoketoesters. synthesis of a potential precursor to the marine 5-(3-indolyl)oxazole martefragin A.
    Davies JR; Kane PD; Moody CJ; Slawin AM
    J Org Chem; 2005 Jul; 70(15):5840-51. PubMed ID: 16018676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of cascade reactions for the concise construction of diverse heterocyclic architectures.
    Lu LQ; Chen JR; Xiao WJ
    Acc Chem Res; 2012 Aug; 45(8):1278-93. PubMed ID: 22577988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.