BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1083 related articles for article (PubMed ID: 26586646)

  • 1. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations.
    Källenius G; Correia-Neves M; Buteme H; Hamasur B; Svenson SB
    Tuberculosis (Edinb); 2016 Jan; 96():120-30. PubMed ID: 26586646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells.
    Mazurek J; Ignatowicz L; Kallenius G; Svenson SB; Pawlowski A; Hamasur B
    PLoS One; 2012; 7(8):e42515. PubMed ID: 22880012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response.
    Briken V; Porcelli SA; Besra GS; Kremer L
    Mol Microbiol; 2004 Jul; 53(2):391-403. PubMed ID: 15228522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of Mycobacterial Lipids by Immune Receptors.
    Ishikawa E; Mori D; Yamasaki S
    Trends Immunol; 2017 Jan; 38(1):66-76. PubMed ID: 27889398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids.
    Correia-Neves M; Nigou J; Mousavian Z; Sundling C; Källenius G
    Front Immunol; 2022; 13():1035122. PubMed ID: 36544778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis.
    Fukuda T; Matsumura T; Ato M; Hamasaki M; Nishiuchi Y; Murakami Y; Maeda Y; Yoshimori T; Matsumoto S; Kobayashi K; Kinoshita T; Morita YS
    mBio; 2013 Feb; 4(1):e00472-12. PubMed ID: 23422411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoarabinomannan mannose caps do not affect mycobacterial virulence or the induction of protective immunity in experimental animal models of infection and have minimal impact on in vitro inflammatory responses.
    Afonso-Barroso A; Clark SO; Williams A; Rosa GT; Nóbrega C; Silva-Gomes S; Vale-Costa S; Ummels R; Stoker N; Movahedzadeh F; van der Ley P; Sloots A; Cot M; Appelmelk BJ; Puzo G; Nigou J; Geurtsen J; Appelberg R
    Cell Microbiol; 2013 Apr; 15(4):660-74. PubMed ID: 23121245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Mycobacterium tuberculosis subverts host immune responses.
    Józefowski S; Sobota A; Kwiatkowska K
    Bioessays; 2008 Oct; 30(10):943-54. PubMed ID: 18800365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis.
    Correia-Neves M; Sundling C; Cooper A; Källenius G
    Front Immunol; 2019; 10():1968. PubMed ID: 31572351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages.
    Schlesinger LS; Hull SR; Kaufman TM
    J Immunol; 1994 Apr; 152(8):4070-9. PubMed ID: 8144972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Analysis of Human Macrophage Inflammatory Response Related to
    Bade P; Simonetti F; Sans S; Laboudie P; Kissane K; Chappat N; Lagrange S; Apparailly F; Roubert C; Duroux-Richard I
    Front Immunol; 2021; 12():668060. PubMed ID: 34276658
    [No Abstract]   [Full Text] [Related]  

  • 12. Mycobacteria-infected bystander macrophages trigger maturation of dendritic cells and enhance their ability to mediate HIV transinfection.
    Mazurek J; Ignatowicz L; Källenius G; Jansson M; Pawlowski A
    Eur J Immunol; 2012 May; 42(5):1192-202. PubMed ID: 22539293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.
    Reed MB; Domenech P; Manca C; Su H; Barczak AK; Kreiswirth BN; Kaplan G; Barry CE
    Nature; 2004 Sep; 431(7004):84-7. PubMed ID: 15343336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against
    Negi S; Pahari S; Bashir H; Agrewala JN
    Front Immunol; 2019; 10():1142. PubMed ID: 31231363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannosylated structures of mycobacterial lipoarabinomannans facilitate the maturation and activation of dendritic cells.
    Zhang S; Wu Q; Lei H; Zheng H; Zhou F; Sun Z; Zhao J; Yu X; Zhang S
    Cell Immunol; 2019 Jan; 335():85-92. PubMed ID: 30527747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison.
    Ehlers S
    Eur J Cell Biol; 2010 Jan; 89(1):95-101. PubMed ID: 19892432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cell activation by sensing Mycobacterium tuberculosis-induced apoptotic neutrophils via DC-SIGN.
    Hedlund S; Persson A; Vujic A; Che KF; Stendahl O; Larsson M
    Hum Immunol; 2010 Jun; 71(6):535-40. PubMed ID: 20219612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacteria target DC-SIGN to suppress dendritic cell function.
    Geijtenbeek TB; Van Vliet SJ; Koppel EA; Sanchez-Hernandez M; Vandenbroucke-Grauls CM; Appelmelk B; Van Kooyk Y
    J Exp Med; 2003 Jan; 197(1):7-17. PubMed ID: 12515809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control.
    Yu X; Zeng J; Xie J
    Biochimie; 2014 Jul; 102():1-8. PubMed ID: 24594065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis.
    Etna MP; Giacomini E; Severa M; Coccia EM
    Semin Immunol; 2014 Dec; 26(6):543-51. PubMed ID: 25453229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.