BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 26586816)

  • 1. Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus.
    Bartley AF; Lucas EK; Brady LJ; Li Q; Hablitz JJ; Cowell RM; Dobrunz LE
    J Neurosci; 2015 Nov; 35(46):15276-90. PubMed ID: 26586816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol.
    Brady LJ; Bartley AF; Li Q; McMeekin LJ; Hablitz JJ; Cowell RM; Dobrunz LE
    Neuropharmacology; 2016 Dec; 111():304-313. PubMed ID: 27480797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice lacking the transcriptional coactivator PGC-1α exhibit alterations in inhibitory synaptic transmission in the motor cortex.
    Dougherty SE; Bartley AF; Lucas EK; Hablitz JJ; Dobrunz LE; Cowell RM
    Neuroscience; 2014 Jun; 271():137-48. PubMed ID: 24769433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice.
    Bhattacharya D; Bartley AF; Li Q; Dobrunz LE
    Neurosci Res; 2022 Nov; 184():9-18. PubMed ID: 35842011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult conditional knockout of PGC-1α in GABAergic neurons causes exaggerated startle reactivity, impaired short-term habituation and hyperactivity.
    Wang J; Song HR; Guo MN; Ma SF; Yun Q; Zhang WN
    Brain Res Bull; 2020 Apr; 157():128-139. PubMed ID: 32057952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha.
    Lucas EK; Markwardt SJ; Gupta S; Meador-Woodruff JH; Lin JD; Overstreet-Wadiche L; Cowell RM
    J Neurosci; 2010 May; 30(21):7227-35. PubMed ID: 20505089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype.
    Feliciano P; Matos H; Andrade R; Bykhovskaia M
    J Neurosci; 2017 Feb; 37(7):1757-1771. PubMed ID: 28087765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene.
    Schmalbach B; Lepsveridze E; Djogo N; Papashvili G; Kuang F; Leshchyns'ka I; Sytnyk V; Nikonenko AG; Dityatev A; Jakovcevski I; Schachner M
    J Neurochem; 2015 Nov; 135(4):830-44. PubMed ID: 26285062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PGC-1α provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons.
    Lucas EK; Dougherty SE; McMeekin LJ; Reid CS; Dobrunz LE; West AB; Hablitz JJ; Cowell RM
    J Neurosci; 2014 Oct; 34(43):14375-87. PubMed ID: 25339750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
    Nanou E; Lee A; Catterall WA
    J Neurosci; 2018 May; 38(18):4430-4440. PubMed ID: 29654190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits.
    Wahlstrom-Helgren S; Klyachko VA
    J Neurophysiol; 2016 Dec; 116(6):2564-2575. PubMed ID: 27605532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent depression of local excitatory connections in the CA1 region of mouse hippocampus.
    Fink AE; Sariñana J; Gray EE; O'dell TJ
    J Neurophysiol; 2007 Jun; 97(6):3926-36. PubMed ID: 17409173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PV-specific loss of the transcriptional coactivator PGC-1α slows down the evolution of epileptic activity in an acute ictogenic model.
    Mackenzie-Gray Scott C; Parrish RR; Walsh D; Racca C; Cowell RM; Trevelyan AJ
    J Neurophysiol; 2022 Jan; 127(1):86-98. PubMed ID: 34788174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term plasticity regulates the excitation/inhibition ratio and the temporal window for spike integration in CA1 pyramidal cells.
    Bartley AF; Dobrunz LE
    Eur J Neurosci; 2015 May; 41(11):1402-15. PubMed ID: 25903384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns.
    Sun HY; Bartley AF; Dobrunz LE
    J Neurophysiol; 2009 Feb; 101(2):1043-55. PubMed ID: 19073817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.
    Park KA; Ribic A; Laage Gaupp FM; Coman D; Huang Y; Dulla CG; Hyder F; Biederer T
    J Neurosci; 2016 Jul; 36(28):7464-75. PubMed ID: 27413156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety.
    Li Q; Bartley AF; Dobrunz LE
    J Neurosci; 2017 Jan; 37(1):23-37. PubMed ID: 28053027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-cell-specific Short-term Plasticity Reduces the Excitatory Drive onto CA1 Interneurons Relative to Pyramidal Cells During Physiologically-derived Spike Trains.
    Sun HY; Li Q; Bartley AF; Dobrunz LE
    Neuroscience; 2018 Sep; 388():430-447. PubMed ID: 30099117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.