BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26586817)

  • 1. Amperometric Monitoring of Sensory-Evoked Dopamine Release in Awake Larval Zebrafish.
    Shang CF; Li XQ; Yin C; Liu B; Wang YF; Zhou Z; Du JL
    J Neurosci; 2015 Nov; 35(46):15291-4. PubMed ID: 26586817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish.
    Meng S; Ryu S; Zhao B; Zhang DQ; Driever W; McMahon DG
    Mol Vis; 2008; 14():2475-83. PubMed ID: 19112533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.
    Privman E; Venton BJ
    J Neurochem; 2015 Nov; 135(4):695-704. PubMed ID: 26296526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon.
    Xi Y; Yu M; Godoy R; Hatch G; Poitras L; Ekker M
    Dev Dyn; 2011 Nov; 240(11):2539-47. PubMed ID: 21932324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish Parla- and Parlb-deficiency affects dopaminergic neuron patterning and embryonic survival.
    Noble S; Ismail A; Godoy R; Xi Y; Ekker M
    J Neurochem; 2012 Jul; 122(1):196-207. PubMed ID: 22506991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time electrochemical recording of dopamine release under optogenetic stimulation.
    Chiu WT; Lin CM; Tsai TC; Wu CW; Tsai CL; Lin SH; Chen JJ
    PLoS One; 2014; 9(2):e89293. PubMed ID: 24586667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site.
    Bai Q; Burton EA
    Neuroscience; 2009 Dec; 164(3):1138-51. PubMed ID: 19755139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain.
    Shin M; Field TM; Stucky CS; Furgurson MN; Johnson MA
    ACS Chem Neurosci; 2017 Sep; 8(9):1880-1888. PubMed ID: 28617576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila.
    Pathak T; Agrawal T; Richhariya S; Sadaf S; Hasan G
    J Neurosci; 2015 Oct; 35(40):13784-99. PubMed ID: 26446229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.
    Patel JC; Rice ME
    Methods Mol Biol; 2013; 964():243-73. PubMed ID: 23296788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Zebrafish Expressing mCherry in the Mitochondria of Dopaminergic Neurons.
    Noble S; Godoy R; Affaticati P; Ekker M
    Zebrafish; 2015 Oct; 12(5):349-56. PubMed ID: 26355474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of serotonin and dopamine release in Drosophila larvae.
    Xiao N; Privman E; Venton BJ
    ACS Chem Neurosci; 2014 Aug; 5(8):666-73. PubMed ID: 24849718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of dopaminergic signalling during larval zebrafish brain development: a tool for investigating the developmental basis of neuropsychiatric disorders.
    Souza BR; Tropepe V
    Rev Neurosci; 2011; 22(1):107-19. PubMed ID: 21615265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism.
    Mu Y; Li XQ; Zhang B; Du JL
    Neuron; 2012 Aug; 75(4):688-99. PubMed ID: 22920259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry.
    Vickrey TL; Condron B; Venton BJ
    Anal Chem; 2009 Nov; 81(22):9306-13. PubMed ID: 19842636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conserved dopaminergic diencephalospinal tract mediates vertebrate locomotor development in zebrafish larvae.
    Lambert AM; Bonkowsky JL; Masino MA
    J Neurosci; 2012 Sep; 32(39):13488-500. PubMed ID: 23015438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.
    Daberkow DP; Brown HD; Bunner KD; Kraniotis SA; Doellman MA; Ragozzino ME; Garris PA; Roitman MF
    J Neurosci; 2013 Jan; 33(2):452-63. PubMed ID: 23303926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.
    Agnesi F; Tye SJ; Bledsoe JM; Griessenauer CJ; Kimble CJ; Sieck GC; Bennet KE; Garris PA; Blaha CD; Lee KH
    J Neurosurg; 2009 Oct; 111(4):701-11. PubMed ID: 19425899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two eARCHT3.0 Lines for Optogenetic Silencing of Dopaminergic and Serotonergic Neurons.
    Krol A; Lopez-Huerta VG; Corey TEC; Deisseroth K; Ting JT; Feng G
    Front Neural Circuits; 2019; 13():4. PubMed ID: 30774584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.