BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26586830)

  • 21. Resting State Connectivity Between Medial Temporal Lobe Regions and Intrinsic Cortical Networks Predicts Performance in a Path Integration Task.
    Izen SC; Chrastil ER; Stern CE
    Front Hum Neurosci; 2018; 12():415. PubMed ID: 30459579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation.
    Sherrill KR; Chrastil ER; Ross RS; Erdem UM; Hasselmo ME; Stern CE
    Neuroimage; 2015 Sep; 118():386-96. PubMed ID: 26054874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theta and alpha oscillations in human hippocampus and medial parietal cortex support the formation of location-based representations.
    Satish A; Keller VG; Raza S; Fitzpatrick S; Horner AJ
    Hippocampus; 2024 Jun; 34(6):284-301. PubMed ID: 38520305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of grid cells involving extra hippocampal path integration, and the hippocampal loop.
    Gaussier P; Banquet JP; Sargolini F; Giovannangeli C; Save E; Poucet B
    J Integr Neurosci; 2007 Sep; 6(3):447-76. PubMed ID: 17933021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.
    Villena-Gonzalez M; Wang HT; Sormaz M; Mollo G; Margulies DS; Jefferies EA; Smallwood J
    Cortex; 2018 Feb; 99():224-234. PubMed ID: 29287243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age differences in the neural systems supporting human allocentric spatial navigation.
    Moffat SD; Elkins W; Resnick SM
    Neurobiol Aging; 2006 Jul; 27(7):965-72. PubMed ID: 15982787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame.
    Sulpizio V; Committeri G; Lambrey S; Berthoz A; Galati G
    Behav Brain Res; 2013 Apr; 242():62-75. PubMed ID: 23274842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps.
    Iaria G; Chen JK; Guariglia C; Ptito A; Petrides M
    Eur J Neurosci; 2007 Feb; 25(3):890-9. PubMed ID: 17298595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of real-world route learning.
    Schinazi VR; Epstein RA
    Neuroimage; 2010 Nov; 53(2):725-35. PubMed ID: 20603219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the use of an internal sense of direction in homing.
    van der Meer MAA; Richmond Z; Braga RM; Wood ER; Dudchenko PA
    Behav Neurosci; 2010 Feb; 124(1):164-169. PubMed ID: 20141292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity.
    Kahn I; Andrews-Hanna JR; Vincent JL; Snyder AZ; Buckner RL
    J Neurophysiol; 2008 Jul; 100(1):129-39. PubMed ID: 18385483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The retrosplenial cortex is necessary for path integration in the dark.
    Elduayen C; Save E
    Behav Brain Res; 2014 Oct; 272():303-7. PubMed ID: 25026093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity.
    Boccia M; Sulpizio V; Nemmi F; Guariglia C; Galati G
    Brain Struct Funct; 2017 May; 222(4):1945-1957. PubMed ID: 27704218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heading-vector navigation based on head-direction cells and path integration.
    Kubie JL; Fenton AA
    Hippocampus; 2009 May; 19(5):456-79. PubMed ID: 19072761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation.
    Iglói K; Doeller CF; Paradis AL; Benchenane K; Berthoz A; Burgess N; Rondi-Reig L
    Cereb Cortex; 2015 Nov; 25(11):4146-54. PubMed ID: 24947462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 3D Space in a Hierarchical Manner.
    Kim M; Maguire EA
    Cereb Cortex; 2018 May; 28(5):1898-1909. PubMed ID: 29554231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memory consolidation of landmarks in good navigators.
    Janzen G; Jansen C; van Turennout M
    Hippocampus; 2008; 18(1):40-7. PubMed ID: 17924521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation.
    Howard LR; Javadi AH; Yu Y; Mill RD; Morrison LC; Knight R; Loftus MM; Staskute L; Spiers HJ
    Curr Biol; 2014 Jun; 24(12):1331-1340. PubMed ID: 24909328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional correlates of likelihood and prior representations in a virtual distance task.
    Wiener M; Michaelis K; Thompson JC
    Hum Brain Mapp; 2016 Sep; 37(9):3172-87. PubMed ID: 27167875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled.
    Alexander AS; Nitz DA
    Curr Biol; 2017 Jun; 27(11):1551-1560.e4. PubMed ID: 28528904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.