These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26586906)

  • 21. How much lung ventilation is obtained with only chest-compression CPR?
    Geddes LA; Rundell A; Otlewski M; Pargett M
    Cardiovasc Eng; 2008 Sep; 8(3):145-8. PubMed ID: 18581233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest?
    Deakin CD; O'Neill JF; Tabor T
    Resuscitation; 2007 Oct; 75(1):53-9. PubMed ID: 17507138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Yannopoulos D; Tang W; Roussos C; Aufderheide TP; Idris AH; Lurie KG
    Respir Care; 2005 May; 50(5):628-35. PubMed ID: 15871757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A strategy to optimise the performance of the mouth-to-bag resuscitator using small tidal volumes: effects on lung and gastric ventilation in a bench model of an unprotected airway.
    Zecha-Stallinger A; Wenzel V; Wagner-Berger HG; von Goedecke A; Lindner KH; Hörmann C
    Resuscitation; 2004 Apr; 61(1):69-74. PubMed ID: 15081184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tidal volume delivery during continuous chest compressions and sustained inflation.
    Solevåg AL; Lee TF; Lu M; Schmölzer GM; Cheung PY
    Arch Dis Child Fetal Neonatal Ed; 2017 Jan; 102(1):F85-F87. PubMed ID: 27566670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous oxygen insufflation in addition to IPPV causes air trapping in a mechanical lung model.
    Howell HB; Parker J; Benumof JL; Harders D
    J Cardiothorac Anesth; 1989 Oct; 3(5):558-63. PubMed ID: 2520933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ventilation caused by external chest compression is unable to sustain effective gas exchange during CPR: a comparison with mechanical ventilation.
    Idris AH; Banner MJ; Wenzel V; Fuerst RS; Becker LB; Melker RJ
    Resuscitation; 1994 Oct; 28(2):143-50. PubMed ID: 7846374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced life support and mechanical ventilation.
    Kill C; Dersch W; Wulf H
    Curr Opin Crit Care; 2012 Jun; 18(3):251-5. PubMed ID: 22450743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric basic life support.
    American Heart Association
    Pediatrics; 2006 May; 117(5):e989-1004. PubMed ID: 16651298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A ventilation technique for oxygenation and carbon dioxide elimination in CPR: Continuous insufflation of oxygen at three levels of pressure in a pig model.
    Ordelman SC; Aelen P; Woerlee PH; van Berkom PF; Scheffer GJ; Noordergraaf GJ
    Resuscitation; 2015 Dec; 97():103-8. PubMed ID: 26423768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Cardiopulmonary effects of CPPV (continuous positive pressure ventilation) and IRV (inverse ratio ventilation) in experimental myocardial ischemia].
    Hachenberg T; Meyer J; Sielenkämper A; Kraft W; Vogt B; Breithardt G; Lawin P
    Anaesthesist; 1993 Apr; 42(4):210-20. PubMed ID: 8488992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracheal gas insufflation as a lung-protective strategy: physiologic, histologic, and biochemical markers.
    Oliver RE; Rozycki HJ; Greenspan JS; Wolfson MR; Shaffer TH
    Pediatr Crit Care Med; 2005 Jan; 6(1):64-9. PubMed ID: 15636662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of volume-controlled, pressure-controlled, and chest compression-induced ventilation during cardiopulmonary resuscitation with an automated mechanical chest compression device: A randomized clinical pilot study.
    Fuest K; Dorfhuber F; Lorenz M; von Dincklage F; Mörgeli R; Kuhn KF; Jungwirth B; Kanz KG; Blobner M; Schaller SJ
    Resuscitation; 2021 Sep; 166():85-92. PubMed ID: 34302927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump?
    Chalkias A; Xanthos T
    Eur Heart J Acute Cardiovasc Care; 2015 Feb; 4(1):24-7. PubMed ID: 24381094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated emergency ventilation devices in a simulated unprotected airway.
    Herff H; Schmittinger CA; von Goedecke A; Paal P; Mitterlechner T; Lindner KH; Wenzel V
    J Emerg Med; 2011 Sep; 41(3):246-51. PubMed ID: 19201138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer-simulated evolution.
    Babbs CF
    Resuscitation; 2006 Feb; 68(2):277-93. PubMed ID: 16388884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventilation During Cardiopulmonary Resuscitation: What Have We Learned From Models?
    Charbonney E; Grieco DL; Cordioli RL; Badat B; Savary D; Richard JM;
    Respir Care; 2019 Sep; 64(9):1132-1138. PubMed ID: 31138729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.