These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26587603)

  • 1. Many-Body Expansion with Overlapping Fragments: Analysis of Two Approaches.
    Richard RM; Herbert JM
    J Chem Theory Comput; 2013 Mar; 9(3):1408-16. PubMed ID: 26587603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation.
    Liu J; Herbert JM
    J Chem Theory Comput; 2016 Feb; 12(2):572-84. PubMed ID: 26730608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
    Gillan MJ; Alfè D; Bygrave PJ; Taylor CR; Manby FR
    J Chem Phys; 2013 Sep; 139(11):114101. PubMed ID: 24070273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-Overlapping-Body (MOB) Expansion: A Generalized Many Body Expansion for Nondisjoint Monomers in Molecular Fragmentation Calculations of Covalent Molecules.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2012 Aug; 8(8):2669-75. PubMed ID: 26592112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory.
    Richard RM; Herbert JM
    J Chem Phys; 2012 Aug; 137(6):064113. PubMed ID: 22897261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a "First Principles" Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters.
    Babin V; Medders GR; Paesani F
    J Chem Theory Comput; 2014 Apr; 10(4):1599-607. PubMed ID: 26580372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded fragmentation of vibrational energies.
    Sode O; Hirata S
    J Chem Phys; 2012 Nov; 137(17):174104. PubMed ID: 23145714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Many-Body Basis Set Superposition Error: Beyond Boys and Bernardi.
    Richard RM; Bakr BW; Sherrill CD
    J Chem Theory Comput; 2018 May; 14(5):2386-2400. PubMed ID: 29578705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jul; 3(4):1342-8. PubMed ID: 26633207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaching the complete-basis limit with a truncated many-body expansion.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2013 Dec; 139(22):224102. PubMed ID: 24329051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate hydrogen bond energies within the density functional tight binding method.
    Domínguez A; Niehaus TA; Frauenheim T
    J Phys Chem A; 2015 Apr; 119(14):3535-44. PubMed ID: 25763597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative single-reference coupled cluster approaches for multireference problems: the simpler, the better.
    Evangelista FA
    J Chem Phys; 2011 Jun; 134(22):224102. PubMed ID: 21682502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.