These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 26587712)
21. Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Zhang X; Walke GR; Horvath I; Kumar R; Blockhuys S; Holgersson S; Walton PH; Wittung-Stafshede P Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2206905119. PubMed ID: 36067318 [TBL] [Abstract][Full Text] [Related]
22. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. Miyayama T; Suzuki KT; Ogra Y Toxicol Appl Pharmacol; 2009 Jun; 237(2):205-13. PubMed ID: 19362104 [TBL] [Abstract][Full Text] [Related]
23. Structure, expression, and chromosomal localization of the mouse Atox1 gene. Hamza I; Klomp LW; Gaedigk R; White RA; Gitlin JD Genomics; 2000 Jan; 63(2):294-7. PubMed ID: 10673341 [TBL] [Abstract][Full Text] [Related]
24. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain. Levy AR; Yarmiayev V; Moskovitz Y; Ruthstein S J Phys Chem B; 2014 Jun; 118(22):5832-42. PubMed ID: 24837030 [TBL] [Abstract][Full Text] [Related]
25. Copper trafficking in the CsoR regulon of Streptomyces lividans. Chaplin AK; Tan BG; Vijgenboom E; Worrall JA Metallomics; 2015 Jan; 7(1):145-55. PubMed ID: 25409712 [TBL] [Abstract][Full Text] [Related]
26. Interactions of the organogold(III) compound Aubipyc with the copper chaperone Atox1: a joint mass spectrometry and circular dichroism investigation. Marzo T; Scaletti F; Michelucci E; Gabbiani C; Pescitelli G; Messori L; Massai L Biometals; 2015 Dec; 28(6):1079-85. PubMed ID: 26453060 [TBL] [Abstract][Full Text] [Related]
27. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model. Kim SM; Hwang IK; Yoo DY; Eum WS; Kim DW; Shin MJ; Ahn EH; Jo HS; Ryu EJ; Yong JI; Cho SW; Kwon OS; Lee KW; Cho YS; Han KH; Park J; Choi SY J Cell Mol Med; 2015 Jun; 19(6):1333-45. PubMed ID: 25781353 [TBL] [Abstract][Full Text] [Related]
28. Interaction of cisplatin and analogue Pt(en)Cl2 with the copper metallo-chaperone Atox1. Sze CM; Shi Z; Khairallah GN; Feketeová L; O'Hair RA; Xiao Z; Donnelly PS; Wedd AG Metallomics; 2013 Aug; 5(8):946-54. PubMed ID: 23778981 [TBL] [Abstract][Full Text] [Related]
29. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Brose J; La Fontaine S; Wedd AG; Xiao Z Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867 [TBL] [Abstract][Full Text] [Related]
30. The copper chaperone Atox1 in canine copper toxicosis in Bedlington terriers. Nanji MS; Cox DW Genomics; 1999 Nov; 62(1):108-12. PubMed ID: 10585777 [TBL] [Abstract][Full Text] [Related]
31. Tuning the metal binding site specificity of a fluorescent sensor protein: from copper to zinc and back. Koay MS; Janssen BM; Merkx M Dalton Trans; 2013 Mar; 42(9):3230-2. PubMed ID: 23076326 [TBL] [Abstract][Full Text] [Related]
32. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Alvarez HM; Xue Y; Robinson CD; Canalizo-Hernández MA; Marvin RG; Kelly RA; Mondragón A; Penner-Hahn JE; O'Halloran TV Science; 2010 Jan; 327(5963):331-4. PubMed ID: 19965379 [TBL] [Abstract][Full Text] [Related]
33. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
34. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism. Sarwar T; Zafaryab M; Husain MA; Ishqi HM; Rehman SU; Rizvi MM; Tabish M Toxicol Appl Pharmacol; 2015 Dec; 289(2):251-61. PubMed ID: 26415834 [TBL] [Abstract][Full Text] [Related]
36. Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy. Beaino W; Guo Y; Chang AJ; Anderson CJ J Biol Inorg Chem; 2014 Mar; 19(3):427-38. PubMed ID: 24445997 [TBL] [Abstract][Full Text] [Related]
37. Changes in copper concentrations affect the protein levels but not the mRNA levels of copper chaperones in human umbilical vein endothelial cells. Dong D; Xu X; Yin W; Kang YJ Metallomics; 2014 Mar; 6(3):554-9. PubMed ID: 24343031 [TBL] [Abstract][Full Text] [Related]
38. Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34. Bersch B; Derfoufi KM; De Angelis F; Auquier V; Ekendé EN; Mergeay M; Ruysschaert JM; Vandenbussche G Biochemistry; 2011 Mar; 50(12):2194-204. PubMed ID: 21299248 [TBL] [Abstract][Full Text] [Related]
39. Predicting the coordination number within copper chaperones: Atox1 as case study. Ansbacher T; Shurki A J Phys Chem B; 2012 Apr; 116(15):4425-32. PubMed ID: 22480337 [TBL] [Abstract][Full Text] [Related]
40. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase. Stasser JP; Siluvai GS; Barry AN; Blackburn NJ Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]