BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26587892)

  • 21. Degradation of crude oil in the rhizosphere of Sorghum bicolor.
    Banks MK; Kulakow P; Schwab AP; Chen Z; Rathbone K
    Int J Phytoremediation; 2003; 5(3):225-34. PubMed ID: 14750430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants.
    Wang A; Fu W; Feng Y; Liu Z; Song D
    J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation.
    Escobar-Alvarado LF; Vaca-Mier M; López R; Rojas-Valencia MN
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):280-285. PubMed ID: 29188328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil].
    Arias-Trinidad A; Rivera-Cruz MC; Roldán-Garrigós A; Aceves-Navarro LA; Quintero-Lizaola R; Hernández-Guzmán J
    Rev Biol Trop; 2017 Mar; 65(1):21-30. PubMed ID: 29465955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Costus speciosus (Koen ex. Retz.) Sm.: a suitable plant species for remediation of crude oil and mercury-contaminated soil.
    Talukdar P; Baruah A; Bhuyan SJ; Boruah S; Borah P; Bora C; Basumatary B
    Environ Sci Pollut Res Int; 2024 May; 31(22):31843-31861. PubMed ID: 38639901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Microbiological characteristics of phytoremediation plant root-soil interface for petroleum contaminated soil].
    Lin X; Li PJ; Sun TH; Li XJ; Sun LN
    Ying Yong Sheng Tai Xue Bao; 2007 Mar; 18(3):607-12. PubMed ID: 17552201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perennial crop growth in oil-contaminated soil in a boreal climate.
    Yan L; Penttinen P; Simojoki A; Stoddard FL; Lindström K
    Sci Total Environ; 2015 Nov; 532():752-61. PubMed ID: 26124012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.
    Yenn R; Borah M; Boruah HP; Roy AS; Baruah R; Saikia N; Sahu OP; Tamuli AK
    Int J Phytoremediation; 2014; 16(7-12):909-25. PubMed ID: 24933892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Two phases bioremediation of oil contaminated soil from Liaohe oil field].
    Li P; Tai P; Guo S; Liu W; Lin X; Zhang C
    Huan Jing Ke Xue; 2003 May; 24(3):74-8. PubMed ID: 12916207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Converging alfalfa (
    Rafique HM; Khan MY; Asghar HN; Ahmad Zahir Z; Nadeem SM; Sohaib M; Alotaibi F; Al-Barakah FNI
    Int J Phytoremediation; 2023; 25(6):717-727. PubMed ID: 35917513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus.
    Basumatary B; Saikia R; Bordoloi S
    J Environ Biol; 2012 Sep; 33(5):891-6. PubMed ID: 23734455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remediation of petroleum contaminated soils through composting and rhizosphere degradation.
    Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B
    J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.
    Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism.
    Fatima K; Imran A; Amin I; Khan QM; Afzal M
    Int J Phytoremediation; 2018 Jun; 20(7):675-681. PubMed ID: 29723052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nematodes as bioindicators of ecosystem recovery during phytoremediation of crude oil contaminated soil.
    Savin MC; Wolf DC; Davis KJ; Gbur EE; Thoma GJ
    Int J Phytoremediation; 2015; 17(1-6):182-90. PubMed ID: 25361231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.
    Cheng L; Wang Y; Cai Z; Liu J; Yu B; Zhou Q
    Int J Phytoremediation; 2017 Mar; 19(3):300-308. PubMed ID: 27592632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.
    Xun F; Xie B; Liu S; Guo C
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):598-608. PubMed ID: 25091168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil.
    Panchenko L; Muratova A; Turkovskaya O
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):3117-3130. PubMed ID: 27858273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands.
    Panchenko L; Muratova A; Dubrovskaya E; Golubev S; Turkovskaya O
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3260-3274. PubMed ID: 29147987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of rhizobacterial community structure of plant species in oil-contaminated soil.
    Lee EH; Cho KS; Kim J
    J Microbiol Biotechnol; 2010 Sep; 20(9):1339-47. PubMed ID: 20890100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.