These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 26588023)
1. Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization. Li W; Sun Y; Yang C; Yan X; Guo H; Fu G ACS Appl Mater Interfaces; 2015 Dec; 7(49):27188-96. PubMed ID: 26588023 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Chen H; Kong J; Yuan D; Fu G Biosens Bioelectron; 2014 Mar; 53():5-11. PubMed ID: 24099918 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links. Yang C; Yan X; Guo H; Fu G Biosens Bioelectron; 2016 Jan; 75():129-35. PubMed ID: 26313422 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of thermo-responsive bovine hemoglobin imprinted nanoparticles by combining ionic liquid immobilization with aqueous precipitation polymerization. Wang Y; Yang C; Sun Y; Qiu F; Xiang Y; Fu G J Sep Sci; 2018 Feb; 41(3):765-773. PubMed ID: 29130634 [TBL] [Abstract][Full Text] [Related]
5. Silica nanoparticle supported molecularly imprinted polymer layers with varied degrees of crosslinking for lysozyme recognition. Chen H; Yuan D; Li Y; Dong M; Chai Z; Kong J; Fu G Anal Chim Acta; 2013 May; 779():82-9. PubMed ID: 23663675 [TBL] [Abstract][Full Text] [Related]
6. Imprinting of protein over silica nanoparticles via surface graft copolymerization using low monomer concentration. He H; Fu G; Wang Y; Chai Z; Jiang Y; Chen Z Biosens Bioelectron; 2010 Oct; 26(2):760-5. PubMed ID: 20643542 [TBL] [Abstract][Full Text] [Related]
7. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization. Wang Y; Chai Z; Sun Y; Gao M; Fu G J Biomater Sci Polym Ed; 2015; 26(11):644-56. PubMed ID: 26073534 [TBL] [Abstract][Full Text] [Related]
8. Controlled synthesis of PEGylated surface protein-imprinted nanoparticles. Yang X; Sun Y; Xiang Y; Qiu F; Fu G Analyst; 2019 Sep; 144(18):5439-5448. PubMed ID: 31410417 [TBL] [Abstract][Full Text] [Related]
9. Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption. Fu G; He H; Chai Z; Chen H; Kong J; Wang Y; Jiang Y Anal Chem; 2011 Feb; 83(4):1431-6. PubMed ID: 21265517 [TBL] [Abstract][Full Text] [Related]
10. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Seifi M; Hassanpour Moghadam M; Hadizadeh F; Ali-Asgari S; Aboli J; Mohajeri SA Int J Pharm; 2014 Aug; 471(1-2):37-44. PubMed ID: 24792981 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of surface protein-imprinted nanoparticles based on metal coordination and anchored carbon dots for enhanced fluorescence detection. Liu Z; Zhang S; Jin S; Feng X; Bai Y; Han X; Fu G Talanta; 2022 Feb; 238(Pt 2):123070. PubMed ID: 34808565 [TBL] [Abstract][Full Text] [Related]
12. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment. Cao J; Zhang X; He X; Chen L; Zhang Y Chem Asian J; 2014 Feb; 9(2):526-33. PubMed ID: 24203562 [TBL] [Abstract][Full Text] [Related]
13. The effectively specific recognition of bovine serum albumin imprinted silica nanoparticles by utilizing a macromolecularly functional monomer to stabilize and imprint template. Qian L; Hu X; Guan P; Wang D; Li J; Du C; Song R; Wang C; Song W Anal Chim Acta; 2015 Jul; 884():97-105. PubMed ID: 26073815 [TBL] [Abstract][Full Text] [Related]
14. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein. Liu D; Yang Q; Jin S; Song Y; Gao J; Wang Y; Mi H Acta Biomater; 2014 Feb; 10(2):769-75. PubMed ID: 24140608 [TBL] [Abstract][Full Text] [Related]
15. Surface-imprinted nanoparticles prepared with a His-tag-anchored epitope as the template. Li S; Yang K; Liu J; Jiang B; Zhang L; Zhang Y Anal Chem; 2015; 87(9):4617-20. PubMed ID: 25886075 [TBL] [Abstract][Full Text] [Related]
16. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. Gao D; Zhang Z; Wu M; Xie C; Guan G; Wang D J Am Chem Soc; 2007 Jun; 129(25):7859-66. PubMed ID: 17550249 [TBL] [Abstract][Full Text] [Related]
17. Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres. Guo H; Yuan D; Fu G J Colloid Interface Sci; 2015 Feb; 440():53-9. PubMed ID: 25460689 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of a surface imprinted hydrogel shell over silica microspheres using bovine serum albumin as a model protein template. Hua Z; Zhou S; Zhao M Biosens Bioelectron; 2009 Nov; 25(3):615-22. PubMed ID: 19230646 [TBL] [Abstract][Full Text] [Related]
19. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin. Zhang M; Wang Y; Jia X; He M; Xu M; Yang S; Zhang C Talanta; 2014 Mar; 120():376-85. PubMed ID: 24468385 [TBL] [Abstract][Full Text] [Related]
20. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy. Li Q; Yang K; Liang Y; Jiang B; Liu J; Zhang L; Liang Z; Zhang Y ACS Appl Mater Interfaces; 2014 Dec; 6(24):21954-60. PubMed ID: 25434676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]