These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26588037)

  • 1. Leishmania hijacking of the macrophage intracellular compartments.
    Liévin-Le Moal V; Loiseau PM
    FEBS J; 2016 Feb; 283(4):598-607. PubMed ID: 26588037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites.
    Courret N; Fréhel C; Gouhier N; Pouchelet M; Prina E; Roux P; Antoine JC
    J Cell Sci; 2002 Jun; 115(Pt 11):2303-16. PubMed ID: 12006615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life in vacuoles--nutrient acquisition by Leishmania amastigotes.
    Burchmore RJ; Barrett MP
    Int J Parasitol; 2001 Oct; 31(12):1311-20. PubMed ID: 11566299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation.
    Okuda K; Tong M; Dempsey B; Moore KJ; Gazzinelli RT; Silverman N
    PLoS Pathog; 2016 Jun; 12(6):e1005669. PubMed ID: 27280707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The macrophage microtubule network acts as a key cellular controller of the intracellular fate of Leishmania infantum.
    Cojean S; Nicolas V; Lievin-Le Moal V
    PLoS Negl Trop Dis; 2020 Jul; 14(7):e0008396. PubMed ID: 32722702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes.
    de Paiva RM; Grazielle-Silva V; Cardoso MS; Nakagaki BN; Mendonça-Neto RP; Canavaci AM; Souza Melo N; Martinelli PM; Fernandes AP; daRocha WD; Teixeira SM
    PLoS Pathog; 2015 Dec; 11(12):e1005296. PubMed ID: 26641088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stage-specific pathways of Leishmania infantum chagasi entry and phagosome maturation in macrophages.
    Rodríguez NE; Gaur Dixit U; Allen LA; Wilson ME
    PLoS One; 2011 Apr; 6(4):e19000. PubMed ID: 21552562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phagosome proteomics to study Leishmania's intracellular niche in macrophages.
    Semini G; Aebischer T
    Int J Med Microbiol; 2018 Jan; 308(1):68-76. PubMed ID: 28927848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redistribution of plasma-membrane surface molecules during formation of the Leishmania amazonensis-containing parasitophorous vacuole.
    Henriques C; de Souza W
    Parasitol Res; 2000 Mar; 86(3):215-25. PubMed ID: 10726992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical analysis of proteins and lipids found in parasitophorous vacuoles containing Leishmania amazonensis.
    Henriques C; Atella GC; Bonilha VL; de Souza W
    Parasitol Res; 2003 Jan; 89(2):123-33. PubMed ID: 12489012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic cells as host cells for the promastigote and amastigote stages of Leishmania amazonensis: the role of opsonins in parasite uptake and dendritic cell maturation.
    Prina E; Abdi SZ; Lebastard M; Perret E; Winter N; Antoine JC
    J Cell Sci; 2004 Jan; 117(Pt 2):315-25. PubMed ID: 14657281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leishmania-macrophage interactions: insights into the redox biology.
    Van Assche T; Deschacht M; da Luz RA; Maes L; Cos P
    Free Radic Biol Med; 2011 Jul; 51(2):337-51. PubMed ID: 21620959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy?
    Merida-de-Barros DA; Chaves SP; Belmiro CLR; Wanderley JLM
    Parasit Vectors; 2018 Oct; 11(1):536. PubMed ID: 30285837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of the parasitophorous vacuole of murine macrophages infected with Leishmania amazonensis in molecule acquisition].
    Cortázar TM; Hernández J; Echeverry MC; Camacho M
    Biomedica; 2006 Oct; 26 Suppl 1():26-37. PubMed ID: 17361839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist.
    Kima PE
    Int J Parasitol; 2007 Aug; 37(10):1087-96. PubMed ID: 17543969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection.
    Canton J; Ndjamen B; Hatsuzawa K; Kima PE
    Cell Microbiol; 2012 Jun; 14(6):937-48. PubMed ID: 22309219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis.
    de Menezes JP; Saraiva EM; da Rocha-Azevedo B
    Parasit Vectors; 2016 May; 9():264. PubMed ID: 27146515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leishmania (Viannia) lainsoni: occurrence of intracellular promastigote forms in vivo and in vitro.
    Corrêa JR; Soares MJ
    Mem Inst Oswaldo Cruz; 2006 Dec; 101(8):923-4. PubMed ID: 17293989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-fracture and cytochemistry study of the interaction between Leishmania mexicana amazonensis and macrophages.
    Pimenta PF; De Souza W
    J Submicrosc Cytol Pathol; 1988 Jan; 20(1):89-99. PubMed ID: 3370624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells.
    Kima PE; Soong L; Chicharro C; Ruddle NH; McMahon-Pratt D
    Eur J Immunol; 1996 Dec; 26(12):3163-9. PubMed ID: 8977318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.