BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26588147)

  • 1. Solvatochromic Shift of Brooker's Merocyanine: Hartree-Fock Exchange in Time Dependent Density Functional Calculation and Hydrogen Bonding Effect.
    Wada T; Nakano H; Sato H
    J Chem Theory Comput; 2014 Oct; 10(10):4535-47. PubMed ID: 26588147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvatochromism and preferential solvation of Brooker's merocyanine in water-methanol mixtures.
    Tanaka Y; Kawashima Y; Yoshida N; Nakano H
    J Comput Chem; 2017 Oct; 38(28):2411-2419. PubMed ID: 28762242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional reference interaction site model self-consistent field analysis of solvent and substituent effects on the absorption spectra of Brooker's merocyanine.
    Tanaka Y; Yoshida N; Nakano H
    J Comput Chem; 2015 Aug; 36(22):1655-63. PubMed ID: 26149347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demystifying the solvatochromic reversal in Brooker's merocyanine dye.
    Murugan NA; Kongsted J; Rinkevicius Z; Agren H
    Phys Chem Chem Phys; 2011 Jan; 13(4):1290-2. PubMed ID: 21132167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluorosolvatochromism of Brooker's merocyanine in pure and in mixed solvents.
    Cavalli V; da Silva DC; Machado C; Machado VG; Soldi V
    J Fluoresc; 2006 Jan; 16(1):77-86. PubMed ID: 16496216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151.
    Neugebauer J; Jacob CR; Wesolowski TA; Baerends EJ
    J Phys Chem A; 2005 Sep; 109(34):7805-14. PubMed ID: 16834158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvatochromic shifts of polar and non-polar molecules in ambient and supercritical water: a sequential quantum mechanics/molecular mechanics study including solute-solvent electron exchange-correlation.
    Ma H; Ma Y
    J Chem Phys; 2012 Dec; 137(21):214504. PubMed ID: 23231248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for Solvatochromic Shifts of Free-Base Porphine Studied with Polarizable Continuum Models and Explicit Solute-Solvent Interactions.
    Fukuda R; Ehara M
    J Chem Theory Comput; 2013 Jan; 9(1):470-80. PubMed ID: 26589048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo-quantum mechanics study of a solvatochromic π* probe.
    Domínguez M; Rezende MC
    J Mol Model; 2016 Sep; 22(9):218. PubMed ID: 27553303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical energy gradient for reference interaction site model self-consistent field explicitly including spatial electron density distribution.
    Yokogawa D; Sato H; Sakaki S
    J Chem Phys; 2009 Dec; 131(21):214504. PubMed ID: 19968348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water solvent effects using continuum and discrete models: The nitromethane molecule, CH3NO2.
    Modesto-Costa L; Uhl E; Borges I
    J Comput Chem; 2015 Nov; 36(30):2260-9. PubMed ID: 26454252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone.
    Ravi Kumar V; Verma C; Umapathy S
    J Chem Phys; 2016 Feb; 144(6):064302. PubMed ID: 26874483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The merits of the frozen-density embedding scheme to model solvatochromic shifts.
    Neugebauer J; Louwerse MJ; Baerends EJ; Wesolowski TA
    J Chem Phys; 2005 Mar; 122(9):094115. PubMed ID: 15836120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2015 Jan; 119(3):958-67. PubMed ID: 25159827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation Effects on Electronic Transitions: Exploring the Performance of Advanced Solvent Potentials in Polarizable Embedding Calculations.
    Schwabe T; Olsen JM; Sneskov K; Kongsted J; Christiansen O
    J Chem Theory Comput; 2011 Jul; 7(7):2209-17. PubMed ID: 26606490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model.
    Zhu T; Zhang JZ; He X
    J Chem Theory Comput; 2013 Apr; 9(4):2104-14. PubMed ID: 26583557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing supercritical water with the n-pi* transition of acetone: a Monte Carlo/quantum mechanics study.
    Fonseca TL; Coutinho K; Canuto S
    J Chem Phys; 2007 Jan; 126(3):034508. PubMed ID: 17249885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.