These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26588155)

  • 1. Charge Transport Properties of Durene Crystals from First-Principles.
    Motta C; Sanvito S
    J Chem Theory Comput; 2014 Oct; 10(10):4624-32. PubMed ID: 26588155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanine crystals: a first principles study.
    Ortmann F; Hannewald K; Bechstedt F
    J Phys Chem B; 2008 Feb; 112(5):1540-8. PubMed ID: 18197657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach.
    Xi J; Wang D; Yi Y; Shuai Z
    J Chem Phys; 2014 Jul; 141(3):034704. PubMed ID: 25053331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Hole Mobility and Its Limit in Crystal-Phase P3HT Calculated from First Principles.
    Lücke A; Ortmann F; Panhans M; Sanna S; Rauls E; Gerstmann U; Schmidt WG
    J Phys Chem B; 2016 Jun; 120(24):5572-80. PubMed ID: 27245400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal.
    Wang LJ; Peng Q; Li QK; Shuai Z
    J Chem Phys; 2007 Jul; 127(4):044506. PubMed ID: 17672706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles prediction of charge mobility in carbon and organic nanomaterials.
    Xi J; Long M; Tang L; Wang D; Shuai Z
    Nanoscale; 2012 Aug; 4(15):4348-69. PubMed ID: 22695470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the thermoelectric properties of SnSe from ab initio calculations.
    González-Romero RL; Antonelli A; Meléndez JJ
    Phys Chem Chem Phys; 2017 May; 19(20):12804-12815. PubMed ID: 28470251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Van der Waals interactions in density functional theory using Wannier functions.
    Silvestrelli PL
    J Phys Chem A; 2009 Apr; 113(17):5224-34. PubMed ID: 19344144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals.
    Reilly AM; Tkatchenko A
    J Chem Phys; 2013 Jul; 139(2):024705. PubMed ID: 23862957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of molecular packing on the charge mobility of organic semiconductors: from quantum charge transfer rate theory beyond the first-order perturbation.
    Nan G; Shi Q; Shuai Z; Li Z
    Phys Chem Chem Phys; 2011 May; 13(20):9736-46. PubMed ID: 21503350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic/inorganic hybrid materials: challenges for ab initio methodology.
    Draxl C; Nabok D; Hannewald K
    Acc Chem Res; 2014 Nov; 47(11):3225-32. PubMed ID: 25171272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.
    Egger DA; Kronik L
    J Phys Chem Lett; 2014 Aug; 5(15):2728-33. PubMed ID: 26277971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.
    Wu Z; Kalia RK; Nakano A; Vashishta P
    J Chem Phys; 2011 May; 134(20):204509. PubMed ID: 21639458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbynes phonons: a tight binding force field.
    Milani A; Tommasini M; Zerbi G
    J Chem Phys; 2008 Feb; 128(6):064501. PubMed ID: 18282050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal electron-phonon coupling in the pentacene crystal: beyond the Γ-point approximation.
    Yi Y; Coropceanu V; Brédas JL
    J Chem Phys; 2012 Oct; 137(16):164303. PubMed ID: 23126706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio analysis of electron-phonon coupling in molecular devices.
    Sergueev N; Roubtsov D; Guo H
    Phys Rev Lett; 2005 Sep; 95(14):146803. PubMed ID: 16241682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal electron-phonon coupling in organic semiconductor crystals: the role of acoustic lattice vibrations.
    Li Y; Coropceanu V; Brédas JL
    J Chem Phys; 2013 May; 138(20):204713. PubMed ID: 23742506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys.
    Tian Z; Li M; Ren Z; Ma H; Alatas A; Wilson SD; Li J
    J Phys Condens Matter; 2015 Sep; 27(37):375403. PubMed ID: 26328745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.