BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 26588162)

  • 1. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction.
    Shen Y; Maupetit J; Derreumaux P; Tufféry P
    J Chem Theory Comput; 2014 Oct; 10(10):4745-58. PubMed ID: 26588162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast method for large-scale de novo peptide and miniprotein structure prediction.
    Maupetit J; Derreumaux P; Tufféry P
    J Comput Chem; 2010 Mar; 31(4):726-38. PubMed ID: 19569182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving fragment quality for de novo structure prediction.
    Shrestha R; Zhang KY
    Proteins; 2014 Sep; 82(9):2240-52. PubMed ID: 24753351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEP-FOLD: an online resource for de novo peptide structure prediction.
    Maupetit J; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W498-503. PubMed ID: 19433514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex.
    Lamiable A; Thévenet P; Rey J; Vavrusa M; Derreumaux P; Tufféry P
    Nucleic Acids Res; 2016 Jul; 44(W1):W449-54. PubMed ID: 27131374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Generalized Attraction-Repulsion Potential and Revisited Fragment Library Improves PEP-FOLD Peptide Structure Prediction.
    Binette V; Mousseau N; Tuffery P
    J Chem Theory Comput; 2022 Apr; 18(4):2720-2736. PubMed ID: 35298162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic fragment-based protein structure prediction algorithm.
    Simoncini D; Berenger F; Shrestha R; Zhang KY
    PLoS One; 2012; 7(7):e38799. PubMed ID: 22829868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated tempering yields insight into the low-resolution Rosetta scoring functions.
    Bowman GR; Pande VS
    Proteins; 2009 Feb; 74(3):777-88. PubMed ID: 18767152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution.
    Tufféry P; Derreumaux P
    Front Bioinform; 2023; 3():1113928. PubMed ID: 36727106
    [No Abstract]   [Full Text] [Related]  

  • 12. An improved protein decoy set for testing energy functions for protein structure prediction.
    Tsai J; Bonneau R; Morozov AV; Kuhlman B; Rohl CA; Baker D
    Proteins; 2003 Oct; 53(1):76-87. PubMed ID: 12945051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides.
    Thévenet P; Shen Y; Maupetit J; Guyon F; Derreumaux P; Tufféry P
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W288-93. PubMed ID: 22581768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-estimation-guided rebuilding of de novo models increases the success rate of ab initio phasing.
    Shrestha R; Simoncini D; Zhang KY
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1522-34. PubMed ID: 23090401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEP-FOLD4: a pH-dependent force field for peptide structure prediction in aqueous solution.
    Rey J; Murail S; de Vries S; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2023 Jul; 51(W1):W432-W437. PubMed ID: 37166962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure prediction by all-atom free-energy refinement.
    Verma A; Wenzel W
    BMC Struct Biol; 2007 Mar; 7():12. PubMed ID: 17371594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rosetta predictions in CASP5: successes, failures, and prospects for complete automation.
    Bradley P; Chivian D; Meiler J; Misura KM; Rohl CA; Schief WR; Wedemeyer WJ; Schueler-Furman O; Murphy P; Schonbrun J; Strauss CE; Baker D
    Proteins; 2003; 53 Suppl 6():457-68. PubMed ID: 14579334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.