These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 26588243)
1. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid. Welch DA; Woehl TJ; Park C; Faller R; Evans JE; Browning ND ACS Nano; 2016 Jan; 10(1):181-7. PubMed ID: 26588243 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation of the forces between colloidal nanoparticles in n-decane solvent. Qin Y; Fichthorn KA J Chem Phys; 2007 Oct; 127(14):144911. PubMed ID: 17935443 [TBL] [Abstract][Full Text] [Related]
3. Real-time imaging of Pt3Fe nanorod growth in solution. Liao HG; Cui L; Whitelam S; Zheng H Science; 2012 May; 336(6084):1011-4. PubMed ID: 22628649 [TBL] [Abstract][Full Text] [Related]
4. Shape effect on nanoparticle solvation: a comparison of morphometric thermodynamics and microscopic theories. Jin Z; Kim J; Wu J Langmuir; 2012 May; 28(17):6997-7006. PubMed ID: 22500946 [TBL] [Abstract][Full Text] [Related]
5. Observation of rotated-oriented attachment during the growth of Ag2S nanorods under mediation of protein. Yang L; Yang H; Yang Z; Cao Y; Ma X; Lu Z; Zheng Z J Phys Chem B; 2008 Aug; 112(32):9795-801. PubMed ID: 18646794 [TBL] [Abstract][Full Text] [Related]
6. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes. Xiao D; Wu Z; Song M; Chun J; Schenter GK; Li D Langmuir; 2018 Jan; 34(4):1466-1472. PubMed ID: 29287142 [TBL] [Abstract][Full Text] [Related]
8. In situ WetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet. Novotný F; Wandrol P; Proška J; Slouf M Microsc Microanal; 2014 Apr; 20(2):385-93. PubMed ID: 24641815 [TBL] [Abstract][Full Text] [Related]
9. Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces. Tan SF; Raj S; Bisht G; Annadata HV; Nijhuis CA; Král P; Mirsaidov U Adv Mater; 2018 Apr; 30(16):e1707077. PubMed ID: 29537111 [TBL] [Abstract][Full Text] [Related]
10. Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopy. Krans NA; Ahmad N; Alloyeau D; de Jong KP; Zečević J Micron; 2019 Feb; 117():40-46. PubMed ID: 30468967 [TBL] [Abstract][Full Text] [Related]
11. Interactions and Attachment Pathways between Functionalized Gold Nanorods. Tan SF; Anand U; Mirsaidov U ACS Nano; 2017 Feb; 11(2):1633-1640. PubMed ID: 28117977 [TBL] [Abstract][Full Text] [Related]
14. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Zhu C; Liang S; Song E; Zhou Y; Wang W; Shan F; Shi Y; Hao C; Yin K; Zhang T; Liu J; Zheng H; Sun L Nat Commun; 2018 Jan; 9(1):421. PubMed ID: 29379109 [TBL] [Abstract][Full Text] [Related]
15. Composition-dependent formation of platinum silver nanowires. Peng Z; You H; Yang H ACS Nano; 2010 Mar; 4(3):1501-10. PubMed ID: 20131921 [TBL] [Abstract][Full Text] [Related]
16. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. Liao HG; Zheng H J Am Chem Soc; 2013 Apr; 135(13):5038-43. PubMed ID: 23477794 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. Ievlev AV; Jesse S; Cochell TJ; Unocic RR; Protopopescu VA; Kalinin SV ACS Nano; 2015 Dec; 9(12):11784-91. PubMed ID: 26509714 [TBL] [Abstract][Full Text] [Related]
18. Separation of nanorods by density gradient centrifugation. Xiong B; Cheng J; Qiao Y; Zhou R; He Y; Yeung ES J Chromatogr A; 2011 Jun; 1218(25):3823-9. PubMed ID: 21571285 [TBL] [Abstract][Full Text] [Related]
19. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods. Jackson SR; McBride JR; Rosenthal SJ; Wright DW J Am Chem Soc; 2014 Apr; 136(14):5261-3. PubMed ID: 24660654 [TBL] [Abstract][Full Text] [Related]