These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26588281)

  • 1. Electronic Excitations in Push-Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding.
    Baumeier B; Rohlfing M; Andrienko D
    J Chem Theory Comput; 2014 Aug; 10(8):3104-10. PubMed ID: 26588281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.
    Baumeier B; Andrienko D; Rohlfing M
    J Chem Theory Comput; 2012 Aug; 8(8):2790-5. PubMed ID: 26592120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited-state electronic structure of molecules using many-body Green's functions: Quasiparticles and electron-hole excitations with VOTCA-XTP.
    Tirimbò G; Sundaram V; Çaylak O; Scharpach W; Sijen J; Junghans C; Brown J; Ruiz FZ; Renaud N; Wehner J; Baumeier B
    J Chem Phys; 2020 Mar; 152(11):114103. PubMed ID: 32199411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP.
    Wehner J; Brombacher L; Brown J; Junghans C; Çaylak O; Khalak Y; Madhikar P; Tirimbò G; Baumeier B
    J Chem Theory Comput; 2018 Dec; 14(12):6253-6268. PubMed ID: 30404449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.
    Wehner J; Baumeier B
    J Chem Theory Comput; 2017 Apr; 13(4):1584-1594. PubMed ID: 28234472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.
    Leng X; Yin H; Liang D; Ma Y
    J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.
    Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X
    J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Status in calculating electronic excited states in transition metal oxides from first principles.
    Bendavid LI; Carter EA
    Top Curr Chem; 2014; 347():47-98. PubMed ID: 24488486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory.
    Baumeier B; Andrienko D; Ma Y; Rohlfing M
    J Chem Theory Comput; 2012 Mar; 8(3):997-1002. PubMed ID: 26593361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods.
    Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M
    J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.
    Ma Y; Rohlfing M; Molteni C
    J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the Charge-Transfer States at Pentacene/C
    Fujita T; Noguchi Y; Hoshi T
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of optical spectra of water clusters with size from many-body Green's function theory.
    Wei M; Jin F; Chen T; Ma Y
    J Chem Phys; 2018 Jun; 148(22):224302. PubMed ID: 29907027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced many-body effects in 2- and 1-dimensional ZnO structures: a Green's function perturbation theory study.
    Wei W; Dai Y; Huang B; Jacob T
    J Chem Phys; 2013 Oct; 139(14):144703. PubMed ID: 24116637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Exciton Harvesting through Long-Range Energy Transfer.
    Wang Y; Ohkita H; Benten H; Ito S
    Chemphyschem; 2015 Apr; 16(6):1263-7. PubMed ID: 25598451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transfer excitations in cofacial fullerene-porphyrin complexes.
    Zope RR; Olguin M; Baruah T
    J Chem Phys; 2012 Aug; 137(8):084317. PubMed ID: 22938243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.