These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26588310)

  • 1. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions.
    Benali A; Shulenburger L; Romero NA; Kim J; von Lilienfeld OA
    J Chem Theory Comput; 2014 Aug; 10(8):3417-22. PubMed ID: 26588310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.
    Ganesh P; Kim J; Park C; Yoon M; Reboredo FA; Kent PR
    J Chem Theory Comput; 2014 Dec; 10(12):5318-23. PubMed ID: 26583215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems.
    Ambrosetti A; Alfè D; DiStasio RA; Tkatchenko A
    J Phys Chem Lett; 2014 Mar; 5(5):849-55. PubMed ID: 26274077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale π-π stacked molecules are bound by collective charge fluctuations.
    Hermann J; Alfè D; Tkatchenko A
    Nat Commun; 2017 Feb; 8():14052. PubMed ID: 28169280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids.
    von Lilienfeld OA; Tkatchenko A
    J Chem Phys; 2010 Jun; 132(23):234109. PubMed ID: 20572691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of ground- and excited-state wave functions and van der Waals clusters.
    Nightingale MP; Melik-Alaverdian V
    Phys Rev Lett; 2001 Jul; 87(4):043401. PubMed ID: 11461615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical importance of van der Waals saddle and excited potential surface in C(
    Shen Z; Ma H; Zhang C; Fu M; Wu Y; Bian W; Cao J
    Nat Commun; 2017 Jan; 8():14094. PubMed ID: 28094253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.
    Goel M; Jayakannan M
    J Phys Chem B; 2010 Oct; 114(39):12508-19. PubMed ID: 20726547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdimensional degeneracies in van der Waals clusters and quantum Monte Carlo computation of rovibrational states.
    Nightingale MP; Moodley M
    J Chem Phys; 2005 Jul; 123(1):014304. PubMed ID: 16035832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved description of soft layered materials with van der Waals density functional theory.
    Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A
    J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds.
    Zhao YH; Abraham MH; Zissimos AM
    J Org Chem; 2003 Sep; 68(19):7368-73. PubMed ID: 12968888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2006 Apr; 110(15):5121-9. PubMed ID: 16610834
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kokkin D; Ivanov M; Loman J; Cai JZ; Uhler B; Reilly N; Rathore R; Reid SA
    J Chem Phys; 2018 Oct; 149(13):134314. PubMed ID: 30292228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene.
    Davidson ER; Klimeš J; Alfè D; Michaelides A
    ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.
    Wang J; Nguyen AV
    Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals density functional from multipole dispersion interactions.
    Alves de Lima N
    J Chem Phys; 2010 Jan; 132(1):014110. PubMed ID: 20078152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects.
    Tkatchenko A; Alfè D; Kim KS
    J Chem Theory Comput; 2012 Nov; 8(11):4317-22. PubMed ID: 26605594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Monte Carlo calculation of the binding energy of bilayer graphene.
    Mostaani E; Drummond ND; Fal'ko VI
    Phys Rev Lett; 2015 Sep; 115(11):115501. PubMed ID: 26406840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. van der Waals interactions between thin metallic wires and layers.
    Drummond ND; Needs RJ
    Phys Rev Lett; 2007 Oct; 99(16):166401. PubMed ID: 17995272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.