These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 26588373)

  • 1. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory.
    Hoferichter M; Ruiz de Elvira J; Kubis B; Meissner UG
    Phys Rev Lett; 2015 Nov; 115(19):192301. PubMed ID: 26588373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion.
    Epelbaum E; Krebs H; Meißner UG
    Phys Rev Lett; 2015 Sep; 115(12):122301. PubMed ID: 26430990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Determination of Pion-Nucleon Coupling Constants Using Effective Field Theory.
    Reinert P; Krebs H; Epelbaum E
    Phys Rev Lett; 2021 Mar; 126(9):092501. PubMed ID: 33750185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Monte Carlo calculations with chiral effective field theory interactions.
    Gezerlis A; Tews I; Epelbaum E; Gandolfi S; Hebeler K; Nogga A; Schwenk A
    Phys Rev Lett; 2013 Jul; 111(3):032501. PubMed ID: 23909312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.
    Hoferichter M; Ruiz de Elvira J; Kubis B; Meißner UG
    Phys Rev Lett; 2015 Aug; 115(9):092301. PubMed ID: 26371645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three- and four-nucleon systems from chiral effective field theory.
    Epelbaum E; Kamada H; Nogga A; Witala H; Glöckle W; Meissner UG
    Phys Rev Lett; 2001 May; 86(21):4787-90. PubMed ID: 11384348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order.
    Ekström A; Baardsen G; Forssén C; Hagen G; Hjorth-Jensen M; Jansen GR; Machleidt R; Nazarewicz W; Papenbrock T; Sarich J; Wild SM
    Phys Rev Lett; 2013 May; 110(19):192502. PubMed ID: 23705702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic nucleon-to-delta transition in chiral effective-field theory.
    Pascalutsa V; Vanderhaeghen M
    Phys Rev Lett; 2005 Dec; 95(23):232001. PubMed ID: 16384297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of the chiral expansion in two-flavor lattice QCD.
    Noaki J; Aoki S; Chiu TW; Fukaya H; Hashimoto S; Hsieh TH; Kaneko T; Matsufuru H; Onogi T; Shintani E; Yamada N;
    Phys Rev Lett; 2008 Nov; 101(20):202004. PubMed ID: 19113332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.
    Tews I; Krüger T; Hebeler K; Schwenk A
    Phys Rev Lett; 2013 Jan; 110(3):032504. PubMed ID: 23373917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taming the pion cloud of the nucleon.
    Alberg M; Miller GA
    Phys Rev Lett; 2012 Apr; 108(17):172001. PubMed ID: 22680854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral three-nucleon forces from p-wave pion production.
    Hanhart C; van Kolck U ; Miller GA
    Phys Rev Lett; 2000 Oct; 85(14):2905-8. PubMed ID: 11005964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation.
    Drischler C; Hebeler K; Schwenk A
    Phys Rev Lett; 2019 Feb; 122(4):042501. PubMed ID: 30768314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Relativistic Chiral Nucleon-Nucleon Interaction up to Next-to-Next-to-Leading Order.
    Lu JX; Wang CX; Xiao Y; Geng LS; Meng J; Ring P
    Phys Rev Lett; 2022 Apr; 128(14):142002. PubMed ID: 35476497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Nuclei up to A=16 using Local Chiral Interactions.
    Lonardoni D; Carlson J; Gandolfi S; Lynn JE; Schmidt KE; Schwenk A; Wang XB
    Phys Rev Lett; 2018 Mar; 120(12):122502. PubMed ID: 29694099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How low-energy weak reactions can constrain three-nucleon forces and the neutron-neutron scattering length.
    Gårdestig A; Phillips DR
    Phys Rev Lett; 2006 Jun; 96(23):232301. PubMed ID: 16803373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baryon chiral perturbation theory extended beyond the low-energy region.
    Epelbaum E; Gegelia J; Meißner UG; Yao DL
    Eur Phys J C Part Fields; 2015; 75(10):499. PubMed ID: 26516302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytic analysis of the pion decay constant in three-flavoured chiral perturbation theory.
    Ananthanarayan B; Bijnens J; Ghosh S
    Eur Phys J C Part Fields; 2017; 77(7):497. PubMed ID: 28943799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized spin polarizabilities of the nucleon in heavy-baryon chiral perturbation theory at order Omicron(p(4)).
    Kao CW; Vanderhaeghen M
    Phys Rev Lett; 2002 Dec; 89(27):272002. PubMed ID: 12513195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperon-nucleon interactions from quantum chromodynamics and the composition of dense nuclear matter.
    Beane SR; Chang E; Cohen SD; Detmold W; Lin HW; Luu TC; Orginos K; Parreño A; Savage MJ; Walker-Loud A;
    Phys Rev Lett; 2012 Oct; 109(17):172001. PubMed ID: 23215178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.