These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26588399)
1. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns. Wan R; Wang C; Lei X; Zhou G; Fang H Phys Rev Lett; 2015 Nov; 115(19):195901. PubMed ID: 26588399 [TBL] [Abstract][Full Text] [Related]
2. Evaporation of tiny water aggregation on solid surfaces with different wetting properties. Wang S; Tu Y; Wan R; Fang H J Phys Chem B; 2012 Nov; 116(47):13863-7. PubMed ID: 23051060 [TBL] [Abstract][Full Text] [Related]
3. Stick-slip control in nanoscale boundary lubrication by surface wettability. Chen W; Foster AS; Alava MJ; Laurson L Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825 [TBL] [Abstract][Full Text] [Related]
4. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Jung YC; Bhushan B J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale wetting under electric field from molecular simulations. Daub CD; Bratko D; Luzar A Top Curr Chem; 2012; 307():155-79. PubMed ID: 21769717 [TBL] [Abstract][Full Text] [Related]
6. Interfacial entropy of water on rigid hydrophobic surfaces. Taherian F; Leroy F; van der Vegt NF Langmuir; 2013 Aug; 29(31):9807-13. PubMed ID: 23855801 [TBL] [Abstract][Full Text] [Related]
7. Water in contact with extended hydrophobic surfaces: direct evidence of weak dewetting. Jensen TR; Østergaard Jensen M; Reitzel N; Balashev K; Peters GH; Kjaer K; Bjørnholm T Phys Rev Lett; 2003 Feb; 90(8):086101. PubMed ID: 12633443 [TBL] [Abstract][Full Text] [Related]
8. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires. Kwak G; Lee M; Senthil K; Yong K Langmuir; 2010 Jul; 26(14):12273-7. PubMed ID: 20509642 [TBL] [Abstract][Full Text] [Related]
9. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
10. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant. Zhu C; Li H; Huang Y; Zeng XC; Meng S Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822 [TBL] [Abstract][Full Text] [Related]
11. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly. Dong F; Zhang M; Tang WW; Wang Y J Phys Chem B; 2015 Apr; 119(16):5321-7. PubMed ID: 25835644 [TBL] [Abstract][Full Text] [Related]
12. Superhydrophobic surfaces from hierarchically structured wrinkled polymers. Li Y; Dai S; John J; Carter KR ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534 [TBL] [Abstract][Full Text] [Related]
13. Wettability studies of topologically distinct titanium surfaces. Kulkarni M; Patil-Sen Y; Junkar I; Kulkarni CV; Lorenzetti M; Iglič A Colloids Surf B Biointerfaces; 2015 May; 129():47-53. PubMed ID: 25819365 [TBL] [Abstract][Full Text] [Related]
14. Evaporation rate of water in hydrophobic confinement. Sharma S; Debenedetti PG Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4365-70. PubMed ID: 22392972 [TBL] [Abstract][Full Text] [Related]
15. Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Zhang J; Leroy F; Müller-Plathe F Langmuir; 2013 Aug; 29(31):9770-82. PubMed ID: 23848165 [TBL] [Abstract][Full Text] [Related]
16. Analysis of droplet evaporation on a superhydrophobic surface. McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771 [TBL] [Abstract][Full Text] [Related]
17. Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces. Kopel Y; Giovambattista N J Phys Chem B; 2019 Dec; 123(50):10814-10824. PubMed ID: 31750656 [TBL] [Abstract][Full Text] [Related]
18. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Accardo A; Gentile F; Mecarini F; De Angelis F; Burghammer M; Di Fabrizio E; Riekel C Langmuir; 2010 Sep; 26(18):15057-64. PubMed ID: 20804171 [TBL] [Abstract][Full Text] [Related]
19. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces. Yang J; Rose FR; Gadegaard N; Alexander MR Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741 [TBL] [Abstract][Full Text] [Related]
20. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. Seo J; Lee S; Lee J; Lee T ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]