These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26588422)
1. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions. Root S; Shulenburger L; Lemke RW; Dolan DH; Mattsson TR; Desjarlais MP Phys Rev Lett; 2015 Nov; 115(19):198501. PubMed ID: 26588422 [TBL] [Abstract][Full Text] [Related]
2. Melting of iron under Earth's core conditions from diffusion Monte Carlo free energy calculations. Sola E; Alfè D Phys Rev Lett; 2009 Aug; 103(7):078501. PubMed ID: 19792692 [TBL] [Abstract][Full Text] [Related]
4. Machine-Learning Accelerated First-Principles Accurate Modeling of the Solid-Liquid Phase Transition in MgO under Mantle Conditions. Wisesa P; Andolina CM; Saidi WA J Phys Chem Lett; 2023 Oct; 14(39):8741-8748. PubMed ID: 37738009 [TBL] [Abstract][Full Text] [Related]
5. Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions. Millot M; Dubrovinskaia N; Černok A; Blaha S; Dubrovinsky L; Braun DG; Celliers PM; Collins GW; Eggert JH; Jeanloz R Science; 2015 Jan; 347(6220):418-20. PubMed ID: 25613887 [TBL] [Abstract][Full Text] [Related]
6. Melting of iron at the physical conditions of the Earth's core. Nguyen JH; Holmes NC Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164 [TBL] [Abstract][Full Text] [Related]
7. Laser-shock compression of magnesium oxide in the warm-dense-matter regime. Miyanishi K; Tange Y; Ozaki N; Kimura T; Sano T; Sakawa Y; Tsuchiya T; Kodama R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023103. PubMed ID: 26382531 [TBL] [Abstract][Full Text] [Related]
8. Demixing instability in dense molten MgSiO3 and the phase diagram of MgO. Boates B; Bonev SA Phys Rev Lett; 2013 Mar; 110(13):135504. PubMed ID: 23581337 [TBL] [Abstract][Full Text] [Related]
9. Phase transformations and metallization of magnesium oxide at high pressure and temperature. McWilliams RS; Spaulding DK; Eggert JH; Celliers PM; Hicks DG; Smith RF; Collins GW; Jeanloz R Science; 2012 Dec; 338(6112):1330-3. PubMed ID: 23180773 [TBL] [Abstract][Full Text] [Related]
10. Pressure effects on the transitions between disordered phases in supercooled liquid silicon. Garcez KM; Antonelli A J Chem Phys; 2011 Nov; 135(20):204508. PubMed ID: 22128944 [TBL] [Abstract][Full Text] [Related]
11. Melting curve of MgO from first-principles simulations. Alfè D Phys Rev Lett; 2005 Jun; 94(23):235701. PubMed ID: 16090481 [TBL] [Abstract][Full Text] [Related]
12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
13. B1-B2 transition in shock-compressed MgO. Wicks JK; Singh S; Millot M; Fratanduono DE; Coppari F; Gorman MG; Ye Z; Rygg JR; Hari A; Eggert JH; Duffy TS; Smith RF Sci Adv; 2024 Jun; 10(23):eadk0306. PubMed ID: 38848357 [TBL] [Abstract][Full Text] [Related]
14. Temperature and Density on the Forsterite Liquid-Vapor Phase Boundary. Davies EJ; Duncan MS; Root S; Kraus RG; Spaulding DK; Jacobsen SB; Stewart ST J Geophys Res Planets; 2021 Apr; 126(4):e2020JE006745. PubMed ID: 34221785 [TBL] [Abstract][Full Text] [Related]
15. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa. Li J; Zhou X; Li J; Wu Q; Cai L; Dai C Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628 [TBL] [Abstract][Full Text] [Related]
16. High-pressure phases of calcium: density-functional theory and diffusion quantum Monte Carlo approach. Teweldeberhan AM; Dubois JL; Bonev SA Phys Rev Lett; 2010 Dec; 105(23):235503. PubMed ID: 21231479 [TBL] [Abstract][Full Text] [Related]