These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 26588442)
1. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches. Han FL; Li Z; Xu Y J Food Sci; 2015 Dec; 80(12):C2751-8. PubMed ID: 26588442 [TBL] [Abstract][Full Text] [Related]
2. Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions. Liu Y; Zhang XK; Shi Y; Duan CQ; He F Food Chem; 2019 Jun; 283():315-323. PubMed ID: 30722877 [TBL] [Abstract][Full Text] [Related]
3. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion. McDougall GJ; Fyffe S; Dobson P; Stewart D Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Zhao X; Ding BW; Qin JW; He F; Duan CQ Food Chem; 2020 Oct; 326():126960. PubMed ID: 32413752 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Fanzone M; González-Manzano S; Pérez-Alonso J; Escribano-Bailón MT; Jofré V; Assof M; Santos-Buelga C Food Chem; 2015 May; 175():166-73. PubMed ID: 25577066 [TBL] [Abstract][Full Text] [Related]
6. Association between modification of phenolic profiling and development of wine color during alcohol fermentation. Li SY; Liu PT; Pan QH; Shi Y; Duan CQ J Food Sci; 2015 Apr; 80(4):C703-10. PubMed ID: 25807971 [TBL] [Abstract][Full Text] [Related]
7. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Bimpilas A; Panagopoulou M; Tsimogiannis D; Oreopoulou V Food Chem; 2016 Apr; 197(Pt A):39-46. PubMed ID: 26616922 [TBL] [Abstract][Full Text] [Related]
8. Preparative isolation of anthocyanins by high-speed countercurrent chromatography and application of the color activity concept to red wine. Degenhardt A; Hofmann S; Knapp H; Winterhalter P J Agric Food Chem; 2000 Dec; 48(12):5812-8. PubMed ID: 11312759 [TBL] [Abstract][Full Text] [Related]
9. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Zhao X; He F; Zhang XK; Shi Y; Duan CQ Food Chem; 2022 May; 375():131670. PubMed ID: 34848083 [TBL] [Abstract][Full Text] [Related]
10. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Han FL; Zhang WN; Pan QH; Zheng CR; Chen HY; Duan CQ Molecules; 2008 Nov; 13(11):2859-70. PubMed ID: 19015625 [TBL] [Abstract][Full Text] [Related]
11. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503 [TBL] [Abstract][Full Text] [Related]
12. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934 [TBL] [Abstract][Full Text] [Related]
13. Malvidin-3- O-glucoside Chemical Behavior in the Wine pH Range. Forino M; Gambuti A; Luciano P; Moio L J Agric Food Chem; 2019 Jan; 67(4):1222-1229. PubMed ID: 30604613 [TBL] [Abstract][Full Text] [Related]
14. Terroir Effect on the Phenolic Composition and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal). Cosme F; Vilela A; Moreira L; Moura C; Enríquez JAP; Filipe-Ribeiro L; Nunes FM Molecules; 2020 Dec; 25(24):. PubMed ID: 33353130 [TBL] [Abstract][Full Text] [Related]
15. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico. Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions. Zhang B; Yang XS; Li NN; Zhu X; Sheng WJ; He F; Duan CQ; Han SY Food Res Int; 2017 Dec; 102():468-477. PubMed ID: 29195974 [TBL] [Abstract][Full Text] [Related]
17. Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography. Li Y; Li L; Cui Y; Zhang S; Sun B J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1054():105-113. PubMed ID: 28416338 [TBL] [Abstract][Full Text] [Related]
18. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related]
19. Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution. Devi A; Konerira Aiyappaa AA; Waterhouse AL J Sci Food Agric; 2020 Mar; 100(5):2110-2120. PubMed ID: 31875958 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of anthocyanin condensation reaction in model wine solution under pulsed light treatment. Mohammadi X; Matinfar G; Mandal R; Singh A; Fiutak G; Kitts DD; Pratap Singh A Food Chem; 2023 Mar; 405(Pt B):134600. PubMed ID: 36403476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]