BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26588476)

  • 1. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule.
    Portale AA; Zhang MY; David V; Martin A; Jiao Y; Gu W; Perwad F
    PLoS One; 2015; 10(11):e0142924. PubMed ID: 26588476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.
    Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,25-Dihydroxyvitamin D Maintains Brush Border Membrane NaPi2a and Attenuates Phosphaturia in Hyp Mice.
    Martins JS; Liu ES; Sneddon WB; Friedman PA; Demay MB
    Endocrinology; 2019 Oct; 160(10):2204-2214. PubMed ID: 31237611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1.
    Gattineni J; Bates C; Twombley K; Dwarakanath V; Robinson ML; Goetz R; Mohammadi M; Baum M
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F282-91. PubMed ID: 19515808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4.
    Gattineni J; Alphonse P; Zhang Q; Mathews N; Bates CM; Baum M
    Am J Physiol Renal Physiol; 2014 Feb; 306(3):F351-8. PubMed ID: 24259513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules.
    Ide N; Ye R; Courbebaisse M; Olauson H; Densmore MJ; Larsson TE; Hanai JI; Lanske B
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1261-F1270. PubMed ID: 29993278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice.
    Du E; Xiao L; Hurley MM
    J Cell Physiol; 2017 Mar; 232(3):610-616. PubMed ID: 27306296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo.
    Küng CJ; Haykir B; Schnitzbauer U; Egli-Spichtig D; Hernando N; Wagner CA
    Am J Physiol Renal Physiol; 2021 Dec; 321(6):F785-F798. PubMed ID: 34719948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Renal hypophosphatemia:pathophysiology and treatment].
    Sekine T
    Clin Calcium; 2016 Feb; 26(2):284-94. PubMed ID: 26813509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation.
    Farrow EG; Summers LJ; Schiavi SC; McCormick JA; Ellison DH; White KE
    J Endocrinol; 2010 Oct; 207(1):67-75. PubMed ID: 20675303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23.
    Marsell R; Krajisnik T; Göransson H; Ohlsson C; Ljunggren O; Larsson TE; Jonsson KB
    Nephrol Dial Transplant; 2008 Mar; 23(3):827-33. PubMed ID: 17911089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.
    Kaneko I; Segawa H; Furutani J; Kuwahara S; Aranami F; Hanabusa E; Tominaga R; Giral H; Caldas Y; Levi M; Kato S; Miyamoto K
    Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium].
    Kido S; Fujihara M; Nomura K; Sasaki S; Shiozaki Y; Segawa H; Tatsumi S; Miyamoto K
    Nihon Eiseigaku Zasshi; 2012; 67(4):464-71. PubMed ID: 23095356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter.
    Segawa H; Kawakami E; Kaneko I; Kuwahata M; Ito M; Kusano K; Saito H; Fukushima N; Miyamoto K
    Pflugers Arch; 2003 Aug; 446(5):585-92. PubMed ID: 12851820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D metabolism in the kidney: regulation by phosphorus and fibroblast growth factor 23.
    Perwad F; Portale AA
    Mol Cell Endocrinol; 2011 Dec; 347(1-2):17-24. PubMed ID: 21914460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice.
    Ranch D; Zhang MY; Portale AA; Perwad F
    J Bone Miner Res; 2011 Aug; 26(8):1883-90. PubMed ID: 21472778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c.
    Tenenhouse HS; Martel J; Gauthier C; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1271-8. PubMed ID: 12952859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype.
    Li H; Martin A; David V; Quarles LD
    Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E508-17. PubMed ID: 21139072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.
    Nakatani T; Ohnishi M; Razzaque MS
    FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.