These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 26588537)

  • 21. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.
    Rocca D; Lu D; Galli G
    J Chem Phys; 2010 Oct; 133(16):164109. PubMed ID: 21033777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory.
    Yin H; Ma Y; Hao X; Mu J; Liu C; Yi Z
    J Chem Phys; 2014 Jun; 140(21):214315. PubMed ID: 24908016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach.
    Duchemin I; Jacquemin D; Blase X
    J Chem Phys; 2016 Apr; 144(16):164106. PubMed ID: 27131530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism.
    Monino E; Loos PF
    J Chem Theory Comput; 2021 May; 17(5):2852-2867. PubMed ID: 33724811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmark of Bethe-Salpeter for Triplet Excited-States.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2017 Feb; 13(2):767-783. PubMed ID: 28107000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High accuracy many-body calculational approaches for excitations in molecules.
    Grossman JC; Rohlfing M; Mitas L; Louie SG; Cohen ML
    Phys Rev Lett; 2001 Jan; 86(3):472-5. PubMed ID: 11177858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals.
    Liu C; Kloppenburg J; Yao Y; Ren X; Appel H; Kanai Y; Blum V
    J Chem Phys; 2020 Jan; 152(4):044105. PubMed ID: 32007075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes.
    Cazzaniga M; Cargnoni F; Penconi M; Bossi A; Ceresoli D
    J Chem Theory Comput; 2020 Feb; 16(2):1188-1199. PubMed ID: 31860292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitonic effects and optical properties of passivated CdSe clusters.
    del Puerto ML; Tiago ML; Chelikowsky JR
    Phys Rev Lett; 2006 Sep; 97(9):096401. PubMed ID: 17026380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revisiting the Charge-Transfer States at Pentacene/C
    Fujita T; Noguchi Y; Hoshi T
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lagrangian Z-vector approach to Bethe-Salpeter analytic gradients: Assessing approximations.
    Villalobos-Castro J; Knysh I; Jacquemin D; Duchemin I; Blase X
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Communication: A hybrid Bethe-Salpeter/time-dependent density-functional-theory approach for excitation energies.
    Holzer C; Klopper W
    J Chem Phys; 2018 Sep; 149(10):101101. PubMed ID: 30219024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel.
    Rebolini E; Toulouse J
    J Chem Phys; 2016 Mar; 144(9):094107. PubMed ID: 26957157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quasiparticle Self-Consistent
    Förster A; Visscher L
    J Chem Theory Comput; 2022 Nov; 18(11):6779-6793. PubMed ID: 36201788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.
    Ma Y; Rohlfing M; Molteni C
    J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist.
    Knysh I; Duchemin I; Blase X; Jacquemin D
    J Chem Phys; 2022 Nov; 157(19):194102. PubMed ID: 36414466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 May; 30(21):215502. PubMed ID: 29667601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The electronic structure and optical response of rutile, anatase and brookite TiO2.
    Landmann M; Rauls E; Schmidt WG
    J Phys Condens Matter; 2012 May; 24(19):195503. PubMed ID: 22517072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.