These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26588740)

  • 1. Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations.
    Miao Y; Merz KM
    J Chem Theory Comput; 2013 Feb; 9(2):965-76. PubMed ID: 26588740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid CPU/GPU method for Hartree-Fock self-consistent-field calculation.
    Qi J; Zhang Y; Yang M
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37681693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster Self-Consistent Field (SCF) Calculations on GPU Clusters.
    Barca GMJ; Alkan M; Galvez-Vallejo JL; Poole DL; Rendell AP; Gordon MS
    J Chem Theory Comput; 2021 Dec; 17(12):7486-7503. PubMed ID: 34780186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
    Luehr N; Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2011 Apr; 7(4):949-54. PubMed ID: 26606344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of the GAMESS-UK electronic structure package on graphical processing units.
    Wilkinson KA; Sherwood P; Guest MF; Naidoo KJ
    J Comput Chem; 2011 Jul; 32(10):2313-8. PubMed ID: 21541963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
    Fernandes KD; Renison CA; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1399-409. PubMed ID: 25975763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbitrary Angular Momentum Electron Repulsion Integrals with Graphical Processing Units: Application to the Resolution of Identity Hartree-Fock Method.
    Kalinowski J; Wennmohs F; Neese F
    J Chem Theory Comput; 2017 Jul; 13(7):3160-3170. PubMed ID: 28605592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
    Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2008 Feb; 4(2):222-31. PubMed ID: 26620654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states.
    Morrison AF; Epifanovsky E; Herbert JM
    J Comput Chem; 2018 Oct; 39(26):2173-2182. PubMed ID: 30368836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid CPU/GPU Integral Engine for Strong-Scaling Ab Initio Methods.
    Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Jul; 13(7):3153-3159. PubMed ID: 28636392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multinode Multi-GPU Two-Electron Integrals: Code Generation Using the Regent Language.
    Johnson KG; Mirchandaney S; Hoag E; Heirich A; Aiken A; Martínez TJ
    J Chem Theory Comput; 2022 Nov; 18(11):6522-6536. PubMed ID: 36200649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.
    Renison CA; Fernandes KD; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1410-9. PubMed ID: 25975864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.
    Yoshikawa T; Nakai H
    J Comput Chem; 2015 Jan; 36(3):164-70. PubMed ID: 25392975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The numerical evaluation of Slater integrals on graphics processing units.
    Dang DK; Wilson LW; Zimmerman PM
    J Comput Chem; 2022 Sep; 43(25):1680-1689. PubMed ID: 35861566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.
    Andrade X; Aspuru-Guzik A
    J Chem Theory Comput; 2013 Oct; 9(10):4360-73. PubMed ID: 26589153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating two algorithms for large-scale compound selection on GPUs.
    Liao Q; Wang J; Watson IA
    J Chem Inf Model; 2011 May; 51(5):1017-24. PubMed ID: 21526799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating VASP electronic structure calculations using graphic processing units.
    Hacene M; Anciaux-Sedrakian A; Rozanska X; Klahr D; Guignon T; Fleurat-Lessard P
    J Comput Chem; 2012 Dec; 33(32):2581-9. PubMed ID: 22903247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation.
    Ufimtsev IS; Martinez TJ
    J Chem Theory Comput; 2009 Apr; 5(4):1004-15. PubMed ID: 26609609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.