These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26588742)
1. Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results. Leverentz HR; Qi HW; Truhlar DG J Chem Theory Comput; 2013 Feb; 9(2):995-1006. PubMed ID: 26588742 [TBL] [Abstract][Full Text] [Related]
2. Zn Coordination Chemistry: Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Amin EA; Truhlar DG J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981 [TBL] [Abstract][Full Text] [Related]
3. Assessment of binding energies of atmospherically relevant clusters. Elm J; Bilde M; Mikkelsen KV Phys Chem Chem Phys; 2013 Oct; 15(39):16442-5. PubMed ID: 23963511 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. Dahlke EE; Olson RM; Leverentz HR; Truhlar DG J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474 [TBL] [Abstract][Full Text] [Related]
5. Energies, Geometries, and Charge Distributions of Zn Molecules, Clusters, and Biocenters from Coupled Cluster, Density Functional, and Neglect of Diatomic Differential Overlap Models. Sorkin A; Truhlar DG; Amin EA J Chem Theory Comput; 2009 May; 5(5):1254-65. PubMed ID: 26609716 [TBL] [Abstract][Full Text] [Related]
6. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
7. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. DiLabio GA; Johnson ER; Otero-de-la-Roza A Phys Chem Chem Phys; 2013 Aug; 15(31):12821-8. PubMed ID: 23803877 [TBL] [Abstract][Full Text] [Related]
8. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules. Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305 [TBL] [Abstract][Full Text] [Related]
9. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
10. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392 [TBL] [Abstract][Full Text] [Related]
11. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations. Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834 [TBL] [Abstract][Full Text] [Related]
12. A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT). Lao KU; Herbert JM J Chem Theory Comput; 2018 Oct; 14(10):5128-5142. PubMed ID: 30199632 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters. Bryantsev VS; Diallo MS; van Duin AC; Goddard WA J Chem Theory Comput; 2009 Apr; 5(4):1016-26. PubMed ID: 26609610 [TBL] [Abstract][Full Text] [Related]
14. The Performance of Density Functionals for Sulfate-Water Clusters. Mardirossian N; Lambrecht DS; McCaslin L; Xantheas SS; Head-Gordon M J Chem Theory Comput; 2013 Mar; 9(3):1368-80. PubMed ID: 26587599 [TBL] [Abstract][Full Text] [Related]
15. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
16. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration. Soniat M; Rogers DM; Rempe SB J Chem Theory Comput; 2015 Jul; 11(7):2958-67. PubMed ID: 26575733 [TBL] [Abstract][Full Text] [Related]
17. Density Functional and Semiempirical Molecular Orbital Methods Including Dispersion Corrections for the Accurate Description of Noncovalent Interactions Involving Sulfur-Containing Molecules. Morgado CA; McNamara JP; Hillier IH; Burton NA; Vincent MA J Chem Theory Comput; 2007 Sep; 3(5):1656-64. PubMed ID: 26627611 [TBL] [Abstract][Full Text] [Related]
18. Accurate Modeling of Water Clusters with Density-Functional Theory Using Atom-Centered Potentials. Holmes JD; Otero-de-la-Roza A; DiLabio GA J Chem Theory Comput; 2017 Sep; 13(9):4205-4215. PubMed ID: 28800231 [TBL] [Abstract][Full Text] [Related]
19. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves. Ess DH; Cook TC J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025 [TBL] [Abstract][Full Text] [Related]
20. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods. Zhao Y; Ng HT; Peverati R; Truhlar DG J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]