BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26588747)

  • 1. Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations.
    Birgin EG; Martınez JM; Martınez L; Rocha GB
    J Chem Theory Comput; 2013 Feb; 9(2):1043-51. PubMed ID: 26588747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.
    Zhou Y; Saad Y; Tiago ML; Chelikowsky JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066704. PubMed ID: 17280174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.
    Scemama A; Renon N; Rapacioli M
    J Chem Theory Comput; 2014 Jun; 10(6):2344-54. PubMed ID: 26580754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms for the electronic and vibrational properties of nanocrystals.
    Chelikowsky JR; Zayak AT; Chan TL; Tiago ML; Zhou Y; Saad Y
    J Phys Condens Matter; 2009 Feb; 21(6):064207. PubMed ID: 21715910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiempirical Molecular Dynamics (SEMD) I: Midpoint-Based Parallel Sparse Matrix-Matrix Multiplication Algorithm for Matrices with Decay.
    Weber V; Laino T; Pozdneev A; Fedulova I; Curioni A
    J Chem Theory Comput; 2015 Jul; 11(7):3145-52. PubMed ID: 26575751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of self-consistent-field convergence by combining conventional diagonalization and a diagonalization-free procedure.
    Baldes A; Klopper W; Simunek J; Noga J; Weigend F
    J Comput Chem; 2011 Nov; 32(14):3129-34. PubMed ID: 21793004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hartree-Fock calculations with linearly scaling memory usage.
    Rudberg E; Rubensson EH; Sałek P
    J Chem Phys; 2008 May; 128(18):184106. PubMed ID: 18532798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase.
    VandeVondele J; Borštnik U; Hutter J
    J Chem Theory Comput; 2012 Oct; 8(10):3565-73. PubMed ID: 26593003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.
    Marek A; Blum V; Johanni R; Havu V; Lang B; Auckenthaler T; Heinecke A; Bungartz HJ; Lederer H
    J Phys Condens Matter; 2014 May; 26(21):213201. PubMed ID: 24786764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kohn-Sham Density Functional Theory Electronic Structure Calculations with Linearly Scaling Computational Time and Memory Usage.
    Rudberg E; Rubensson EH; Sałek P
    J Chem Theory Comput; 2011 Feb; 7(2):340-50. PubMed ID: 26596156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudodiagonalization Method for Accelerating Nonlinear Subspace Diagonalization in Density Functional Theory.
    Shah S; Suryanarayana P; Chow E
    J Chem Theory Comput; 2022 Jun; 18(6):3474-3482. PubMed ID: 35608960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagonalization of large matrices: a new parallel algorithm.
    Nebot-Gil I
    J Chem Theory Comput; 2015 Feb; 11(2):472-83. PubMed ID: 26580907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.
    Mniszewski SM; Cawkwell MJ; Wall ME; Mohd-Yusof J; Bock N; Germann TC; Niklasson AM
    J Chem Theory Comput; 2015 Oct; 11(10):4644-54. PubMed ID: 26574255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics.
    Yu HG
    Phys Chem Chem Phys; 2015 Jun; 17(21):14071-82. PubMed ID: 25959361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divide-and-Conquer Hartree-Fock Calculations on Proteins.
    He X; Merz KM
    J Chem Theory Comput; 2010 Jan; 6(2):405-411. PubMed ID: 20401160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.
    Hesselmann A; Görling A
    J Chem Phys; 2011 Jan; 134(3):034120. PubMed ID: 21261343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems.
    Aarons J; Skylaris CK
    J Chem Phys; 2018 Feb; 148(7):074107. PubMed ID: 29471650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.