These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26588958)

  • 1. How Important is Orbital Choice in Single-Determinant Diffusion Quantum Monte Carlo Calculations?
    Per MC; Walker KA; Russo SP
    J Chem Theory Comput; 2012 Jul; 8(7):2255-9. PubMed ID: 26588958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set.
    Wang T; Zhou X; Wang F
    J Phys Chem A; 2019 May; 123(17):3809-3817. PubMed ID: 30950620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaching chemical accuracy with quantum Monte Carlo.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional orbitals in quantum Monte Carlo: The importance of accurate densities.
    Per MC; Fletcher EK; Cleland DM
    J Chem Phys; 2019 May; 150(18):184101. PubMed ID: 31091891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing orbital valence bond method in diffusion Monte Carlo: C-H bond dissociation of acetylene.
    Domin D; Braïda B; Lester WA
    J Phys Chem A; 2008 Sep; 112(38):8964-9. PubMed ID: 18646737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of quantum Monte Carlo for calculating molecular bond lengths.
    Cleland DM; Per MC
    J Chem Phys; 2016 Mar; 144(12):124108. PubMed ID: 27036428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe.
    Ma A; Drummond ND; Towler MD; Needs RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066704. PubMed ID: 16089908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein.
    Bouabça T; Ben Amor N; Maynau D; Caffarel M
    J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals.
    Rao L; Wang F
    J Chem Phys; 2022 Mar; 156(12):124308. PubMed ID: 35364895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A diffusion Monte Carlo study of the O-H bond dissociation of phenol.
    Wang J; Domin D; Austin B; Zubarev DY; McClean J; Frenklach M; Cui T; Lester WA
    J Phys Chem A; 2010 Sep; 114(36):9832-5. PubMed ID: 20825240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions.
    Peng Y; Zhou X; Wang Z; Wang F
    J Chem Phys; 2021 Jan; 154(2):024301. PubMed ID: 33445915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate nonrelativistic ground-state energies of 3d transition metal atoms.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Chem Phys; 2014 Dec; 141(24):244110. PubMed ID: 25554136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of nodal structures and the construction of trial wave functions.
    Bressanini D; Morosi G; Tarasco S
    J Chem Phys; 2005 Nov; 123(20):204109. PubMed ID: 16351242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants.
    Zhou X; Wang F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.