These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26588970)

  • 1. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
    Gapsys V; Seeliger D; de Groot BL
    J Chem Theory Comput; 2012 Jul; 8(7):2373-82. PubMed ID: 26588970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear-scaling soft-core scheme for alchemical free energy calculations.
    Buelens FP; Grubmüller H
    J Comput Chem; 2012 Jan; 33(1):25-33. PubMed ID: 21953650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear Basis Function Approach to Efficient Alchemical Free Energy Calculations. 1. Removal of Uncharged Atomic Sites.
    Naden LN; Pham TT; Shirts MR
    J Chem Theory Comput; 2014 Mar; 10(3):1128-49. PubMed ID: 26580188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations.
    Li Y; Nam K
    J Chem Theory Comput; 2020 Aug; 16(8):4776-4789. PubMed ID: 32559374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics.
    Abrams JB; Rosso L; Tuckerman ME
    J Chem Phys; 2006 Aug; 125(7):074115. PubMed ID: 16942330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation potentials to overcome order/disorder transitions in alchemical binding free energy calculations.
    Pal RK; Gallicchio E
    J Chem Phys; 2019 Sep; 151(12):124116. PubMed ID: 31575187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alchemical Free Energy Differences in Flexible Molecules from Thermodynamic Integration or Free Energy Perturbation Combined with Driven Adiabatic Dynamics.
    Cuendet MA; Tuckerman ME
    J Chem Theory Comput; 2012 Oct; 8(10):3504-12. PubMed ID: 26592999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alchemical transformations for concerted hydration free energy estimation with explicit solvation.
    Khuttan S; Azimi S; Wu JZ; Gallicchio E
    J Chem Phys; 2021 Feb; 154(5):054103. PubMed ID: 33557533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal "Alchemical" path, and practical solutions.
    Blondel A
    J Comput Chem; 2004 May; 25(7):985-93. PubMed ID: 15027110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alchemical Free-Energy Calculations by Multiple-Replica λ-Dynamics: The Conveyor Belt Thermodynamic Integration Scheme.
    Hahn DF; Hünenberger PH
    J Chem Theory Comput; 2019 Apr; 15(4):2392-2419. PubMed ID: 30821973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations.
    Steinbrecher T; Mobley DL; Case DA
    J Chem Phys; 2007 Dec; 127(21):214108. PubMed ID: 18067350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal pairwise and non-pairwise alchemical pathways for free energy calculations of molecular transformation in solution phase.
    Pham TT; Shirts MR
    J Chem Phys; 2012 Mar; 136(12):124120. PubMed ID: 22462848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential.
    Pérez A; von Lilienfeld OA
    J Chem Theory Comput; 2011 Aug; 7(8):2358-69. PubMed ID: 26606611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of binding free energies.
    Gapsys V; Michielssens S; Peters JH; de Groot BL; Leonov H
    Methods Mol Biol; 2015; 1215():173-209. PubMed ID: 25330964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration.
    Bruckner S; Boresch S
    J Comput Chem; 2011 May; 32(7):1320-33. PubMed ID: 21425289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practically Efficient and Robust Free Energy Calculations: Double-Integration Orthogonal Space Tempering.
    Zheng L; Yang W
    J Chem Theory Comput; 2012 Mar; 8(3):810-23. PubMed ID: 26593343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Illustrative Calculations and Numerical Validation.
    Giovannelli E; Cioni M; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R
    J Chem Theory Comput; 2017 Dec; 13(12):5887-5899. PubMed ID: 29112430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.