These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26588977)

  • 1. Collective Reaction Coordinate for Hybrid Quantum and Molecular Mechanics Simulations: A Case Study of the Hydride Transfer in Dihydrofolate Reductase.
    Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Jul; 8(7):2484-96. PubMed ID: 26588977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Quantum and Classical Simulations of the Formate Dehydrogenase Catalyzed Hydride Transfer Reaction on an Accurate Semiempirical Potential Energy Surface.
    Vardi-Kilshtain A; Major DT; Kohen A; Engel H; Doron D
    J Chem Theory Comput; 2012 Nov; 8(11):4786-96. PubMed ID: 26605631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.
    Engel H; Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Apr; 8(4):1223-34. PubMed ID: 26596739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.
    Wang Q; Hammes-Schiffer S
    J Chem Phys; 2006 Nov; 125(18):184102. PubMed ID: 17115733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase.
    Hu H; Lu Z; Yang W
    J Chem Theory Comput; 2007 Mar; 3(2):390-406. PubMed ID: 19079734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface.
    Doron D; Major DT; Kohen A; Thiel W; Wu X
    J Chem Theory Comput; 2011 Oct; 7(10):3420-37. PubMed ID: 26598171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an Automatic Determination of Enzymatic Reaction Mechanisms and Their Activation Free Energies.
    Zinovjev K; Ruiz-Pernía JJ; Tuñón I
    J Chem Theory Comput; 2013 Aug; 9(8):3740-9. PubMed ID: 26584125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of a Complete Enzymic Reaction Surface:  Reaction and Activation Free Energies for Hydride-Ion Transfer in Dihydrofolate Reductase.
    Cummins PL; Rostov IV; Gready JE
    J Chem Theory Comput; 2007 May; 3(3):1203-11. PubMed ID: 26627439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.
    Faheem M; Heyden A
    J Chem Theory Comput; 2014 Aug; 10(8):3354-68. PubMed ID: 26588304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Collective Coordinate to Obtain Free Energy Profiles for Complex Reactions in Condensed Phases.
    Zinovjev K; Martí S; Tuñón I
    J Chem Theory Comput; 2012 May; 8(5):1795-801. PubMed ID: 26593670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
    Polyak I; Benighaus T; Boulanger E; Thiel W
    J Chem Phys; 2013 Aug; 139(6):064105. PubMed ID: 23947841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force.
    Kim B; Snyder R; Nagaraju M; Zhou Y; Ojeda-May P; Keeton S; Hege M; Shao Y; Pu J
    J Chem Theory Comput; 2021 Aug; 17(8):4961-4980. PubMed ID: 34283604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction Path Force Matching: A New Strategy of Fitting Specific Reaction Parameters for Semiempirical Methods in Combined QM/MM Simulations.
    Zhou Y; Pu J
    J Chem Theory Comput; 2014 Aug; 10(8):3038-54. PubMed ID: 26588275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topologically invariant reaction coordinates for simulating multistate chemical reactions.
    Mones L; Csányi G
    J Phys Chem B; 2012 Dec; 116(51):14876-85. PubMed ID: 23214508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.