These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26589153)

  • 1. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.
    Andrade X; Aspuru-Guzik A
    J Chem Theory Comput; 2013 Oct; 9(10):4360-73. PubMed ID: 26589153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.
    Andrade X; Alberdi-Rodriguez J; Strubbe DA; Oliveira MJ; Nogueira F; Castro A; Muguerza J; Arruabarrena A; Louie SG; Aspuru-Guzik A; Rubio A; Marques MA
    J Phys Condens Matter; 2012 Jun; 24(23):233202. PubMed ID: 22562950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models.
    Liu F; Luehr N; Kulik HJ; Martínez TJ
    J Chem Theory Comput; 2015 Jul; 11(7):3131-44. PubMed ID: 26575750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
    Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2008 Feb; 4(2):222-31. PubMed ID: 26620654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations.
    Miao Y; Merz KM
    J Chem Theory Comput; 2013 Feb; 9(2):965-76. PubMed ID: 26588740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU acceleration of local and semilocal density functional calculations in the SPARC electronic structure code.
    Sharma A; Metere A; Suryanarayana P; Erlandson L; Chow E; Pask JE
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37249229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.
    Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Jun; 13(6):2712-2716. PubMed ID: 28561575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states.
    Morrison AF; Epifanovsky E; Herbert JM
    J Comput Chem; 2018 Oct; 39(26):2173-2182. PubMed ID: 30368836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory.
    Williams-Young DB; Asadchev A; Popovici DT; Clark D; Waldrop J; Windus TL; Valeev EF; de Jong WA
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37326157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering.
    Kommera PR; Ramakrishnaiah V; Sweeney C; Donatelli J; Zwart PH
    J Appl Crystallogr; 2021 Aug; 54(Pt 4):1179-1188. PubMed ID: 34429723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units.
    Manathunga M; Aktulga HM; Götz AW; Merz KM
    J Chem Inf Model; 2023 Feb; 63(3):711-717. PubMed ID: 36720086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Efficient Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters.
    Williams-Young DB; de Jong WA; van Dam HJJ; Yang C
    Front Chem; 2020; 8():581058. PubMed ID: 33363105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.
    Yoshikawa T; Nakai H
    J Comput Chem; 2015 Jan; 36(3):164-70. PubMed ID: 25392975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling solvation effects in real-space and real-time within density functional approaches.
    Delgado A; Corni S; Pittalis S; Rozzi CA
    J Chem Phys; 2015 Oct; 143(14):144111. PubMed ID: 26472367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations.
    Wilkinson K; Skylaris CK
    J Comput Chem; 2013 Oct; 34(28):2446-59. PubMed ID: 24038140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient implementation of effective core potential integrals and gradients on graphical processing units.
    Song C; Wang LP; Sachse T; Preiss J; Presselt M; Martínez TJ
    J Chem Phys; 2015 Jul; 143(1):014114. PubMed ID: 26156472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.
    Kalantzis G; Tachibana H
    Comput Methods Programs Biomed; 2014; 113(1):116-25. PubMed ID: 24113420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.
    Genovese L; Ospici M; Deutsch T; Méhaut JF; Neelov A; Goedecker S
    J Chem Phys; 2009 Jul; 131(3):034103. PubMed ID: 19624177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.