These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26589242)

  • 21. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language comprehension.
    Xiao Y; Friederici AD; Margulies DS; Brauer J
    Neuropsychologia; 2016 Mar; 83():274-282. PubMed ID: 26352468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.
    Gonzálvez GG; Trimmel K; Haag A; van Graan LA; Koepp MJ; Thompson PJ; Duncan JS
    Epilepsy Res; 2016 Dec; 128():102-112. PubMed ID: 27833066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional connectivity in the developing language network in 4-year-old children predicts future reading ability.
    Jasińska KK; Shuai L; Lau ANL; Frost S; Landi N; Pugh KR
    Dev Sci; 2021 Mar; 24(2):e13041. PubMed ID: 33032375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural dynamics of the intention to speak.
    Carota F; Posada A; Harquel S; Delpuech C; Bertrand O; Sirigu A
    Cereb Cortex; 2010 Aug; 20(8):1891-7. PubMed ID: 20008453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinctive neural signatures for negative sentences in Hindi: an fMRI study.
    Kumar U; Padakannaya P; Mishra RK; Khetrapal CL
    Brain Imaging Behav; 2013 Jun; 7(2):91-101. PubMed ID: 22869007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Language Functions in the Frontal Association Area: Brain Mechanisms That Create Language].
    Yamamoto K; Sakai KL
    Brain Nerve; 2016 Nov; 68(11):1283-1290. PubMed ID: 27852019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How reading acquisition changes children's spoken language network.
    Monzalvo K; Dehaene-Lambertz G
    Brain Lang; 2013 Dec; 127(3):356-65. PubMed ID: 24216407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional heterogeneity in the processing and the production of speech in the human planum temporale.
    Tremblay P; Deschamps I; Gracco VL
    Cortex; 2013 Jan; 49(1):143-57. PubMed ID: 22019203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Syntactic Complexity and Frequency in the Neurocognitive Language System.
    Yang YH; Marslen-Wilson WD; Bozic M
    J Cogn Neurosci; 2017 Sep; 29(9):1605-1620. PubMed ID: 28430044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus.
    Thieba C; Long X; Dewey D; Lebel C
    Brain Cogn; 2019 Aug; 134():71-79. PubMed ID: 30007529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging.
    Jasińska KK; Petitto LA
    Dev Neuropsychol; 2014; 39(6):421-39. PubMed ID: 25144256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competitive mechanisms in sentence processing: common and distinct production and reading comprehension networks linked to the prefrontal cortex.
    Humphreys GF; Gennari SP
    Neuroimage; 2014 Jan; 84():354-66. PubMed ID: 24012545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia.
    van der Mark S; Klaver P; Bucher K; Maurer U; Schulz E; Brem S; Martin E; Brandeis D
    Neuroimage; 2011 Feb; 54(3):2426-36. PubMed ID: 20934519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reading speech from still and moving faces: the neural substrates of visible speech.
    Calvert GA; Campbell R
    J Cogn Neurosci; 2003 Jan; 15(1):57-70. PubMed ID: 12590843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences.
    Sakai KL; Tatsuno Y; Suzuki K; Kimura H; Ichida Y
    Brain; 2005 Jun; 128(Pt 6):1407-17. PubMed ID: 15728651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electrophysiological study of print processing in kindergarten: the contribution of the visual n1 as a predictor of reading outcome.
    Brem S; Bach S; Kujala JV; Maurer U; Lyytinen H; Richardson U; Brandeis D
    Dev Neuropsychol; 2013; 38(8):567-94. PubMed ID: 24219696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural processing of vision and language in kindergarten is associated with prereading skills and predicts future literacy.
    Liebig J; Froehlich E; Sylvester T; Braun M; Heekeren HR; Ziegler JC; Jacobs AM
    Hum Brain Mapp; 2021 Aug; 42(11):3517-3533. PubMed ID: 33942958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poor reading is characterized by a more connected network with wrong hubs.
    Mao J; Liu L; Perkins K; Cao F
    Brain Lang; 2021 Sep; 220():104983. PubMed ID: 34174464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence.
    Schulz E; Maurer U; van der Mark S; Bucher K; Brem S; Martin E; Brandeis D
    Neuroimage; 2008 May; 41(1):153-68. PubMed ID: 18378166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual Differences in Reading Skill Are Related to Trial-by-Trial Neural Activation Variability in the Reading Network.
    Malins JG; Pugh KR; Buis B; Frost SJ; Hoeft F; Landi N; Mencl WE; Kurian A; Staples R; Molfese PJ; Sevcik R; Morris R
    J Neurosci; 2018 Mar; 38(12):2981-2989. PubMed ID: 29440534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.