BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26589321)

  • 21. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.).
    Chandrasekaran U; Xu W; Liu A
    Cell Biosci; 2014; 4():33. PubMed ID: 25061509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.).
    Jin Z; Xu W; Liu A
    Planta; 2014 Feb; 239(2):299-312. PubMed ID: 24165825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection and validation of castor bean (Ricinus communis) reference genes for quantitative PCR (RT-qPCR) in developing and germinating seeds and expression pattern of four ricin-family genes.
    Rocha AJ; de Oliveira Barsottini MR; da Rocha SL
    Gene Expr Patterns; 2019 Dec; 34():119072. PubMed ID: 31536823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide identification of core components of ABA signaling and transcriptome analysis reveals gene circuits involved in castor bean (Ricinus communis L.) response to drought.
    Jardim-Messeder D; Cassol D; Souza-Vieira Y; Ehlers Loureiro M; Girke T; Boroni M; Lopes Corrêa R; Coelho A; Sachetto-Martins G
    Gene; 2023 Oct; 883():147668. PubMed ID: 37500024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative proteomic and transcriptomic analyses provide new insight into the formation of seed size in castor bean.
    Yu A; Li F; Liu A
    BMC Plant Biol; 2020 Jan; 20(1):48. PubMed ID: 32000683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative Proteomic Analysis of Castor (
    Wang X; Li M; Liu X; Zhang L; Duan Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.
    Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J
    Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean.
    Han B; Wu D; Zhang Y; Li DZ; Xu W; Liu A
    BMC Biol; 2022 Mar; 20(1):57. PubMed ID: 35227267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis).
    Wang Y; Xu W; Chen Z; Han B; Haque ME; Liu A
    Planta; 2018 Mar; 247(3):559-572. PubMed ID: 29119268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes.
    Ruuska SA; Schwender J; Ohlrogge JB
    Plant Physiol; 2004 Sep; 136(1):2700-9. PubMed ID: 15347783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and castor.
    Yang Z; Liu X; Li N; Du C; Wang K; Zhao C; Wang Z; Hu Y; Zhang M
    Plant Sci; 2019 Oct; 287():110193. PubMed ID: 31481195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of diacylglycerol acyltransferase in developing seeds of castor.
    He X; Chen GQ; Lin JT; McKeon TA
    Lipids; 2004 Sep; 39(9):865-71. PubMed ID: 15669762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and sensitive assay for distinguishing the expression of ricin and Ricinus communis agglutinin genes in developing castor seed (R. communis L.).
    Chen GQ; He X; McKeon TA
    J Agric Food Chem; 2005 Mar; 53(6):2358-61. PubMed ID: 15769181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splice Variants of the Castor WRI1 Gene Upregulate Fatty Acid and Oil Biosynthesis When Expressed in Tobacco Leaves.
    Ji XJ; Mao X; Hao QT; Liu BL; Xue JA; Li RZ
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29303957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of NADP-dependent malic enzyme from developing castor oil seed endosperm.
    Shearer HL; Turpin DH; Dennis DT
    Arch Biochem Biophys; 2004 Sep; 429(2):134-44. PubMed ID: 15313216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production.
    Ruiz Olivares A; Carrillo-González R; González-Chávez Mdel C; Soto Hernández RM
    J Environ Manage; 2013 Jan; 114():316-23. PubMed ID: 23171605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relation between apomictic seed production and morpho-physiological characteristics in a world collection of castor bean (Ricinus communis L.).
    Setayeshnasab M; Sabzalian MR; Rahimmalek M
    Sci Rep; 2024 Feb; 14(1):5013. PubMed ID: 38424457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New efficient DNA extraction method to access the microbiome of Ricinus communis seeds.
    Santos CD; Dias AC; Amaral IM; Bonetti AM; Campos TA
    Genet Mol Res; 2013 Feb; 12(3):3128-35. PubMed ID: 23479168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation.
    Gerrard Wheeler MC; Arias CL; Righini S; Badia MB; Andreo CS; Drincovich MF; Saigo M
    PLoS One; 2016; 11(6):e0158040. PubMed ID: 27347875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.