These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26589327)

  • 21. Heat production in human skeletal muscle at the onset of intense dynamic exercise.
    González-Alonso J; Quistorff B; Krustrup P; Bangsbo J; Saltin B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):603-15. PubMed ID: 10766936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle.
    Homsher E; Irving M; Wallner A
    J Physiol; 1981 Dec; 321():423-36. PubMed ID: 6978398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics studies of muscles of different types.
    Kushmerick MJ
    Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical Energetics of contraction in mammalian smooth muscle.
    Butler TM; Siegman MJ
    Fed Proc; 1982 Feb; 41(2):204-8. PubMed ID: 7060747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mammalian muscle model for predicting force and energetics during physiological behaviors.
    Tsianos GA; Rustin C; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):117-33. PubMed ID: 21859633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioenergetic approach to transfer function of human skeletal muscle.
    Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1994 Oct; 77(4):1784-9. PubMed ID: 7836200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and modelling evidence of shortening heat in cardiac muscle.
    Tran K; Han JC; Crampin EJ; Taberner AJ; Loiselle DS
    J Physiol; 2017 Oct; 595(19):6313-6326. PubMed ID: 28771742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical change and energy output during muscular contraction.
    Gilbert C; Kretzschmar KM; Wilkie DR; Woledge RC
    J Physiol; 1971 Oct; 218(1):163-93. PubMed ID: 5130607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rate-limiting energy-dependent steps controlling oxidative metabolism-contraction coupling in rabbit aorta.
    Coburn RF; Moreland S; Moreland RS; Baron CB
    J Physiol; 1992 Mar; 448():473-92. PubMed ID: 1534369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    J Physiol; 1980 Feb; 299():465-84. PubMed ID: 6966688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    J Biomech; 1993 Oct; 26(10):1217-25. PubMed ID: 8253826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetics of calcium cycling in nonfailing and failing human myocardium.
    Hasenfuss G; Mulieri LA; Holubarsch C; Pieske B; Just H; Alpert NR
    Basic Res Cardiol; 1992; 87 Suppl 2():81-92. PubMed ID: 1299212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of isoproterenol on contractile protein function, excitation-contraction coupling, and energy turnover of isolated nonfailing human myocardium.
    Hasenfuss G; Mulieri LA; Leavitt BJ; Alpert NR
    J Mol Cell Cardiol; 1994 Nov; 26(11):1461-9. PubMed ID: 7897670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L
    J Mol Cell Cardiol; 1976 Sep; 08(9):669-78. PubMed ID: 972404
    [No Abstract]   [Full Text] [Related]  

  • 37. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans.
    Hultman E; Spriet LL
    J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic recovery of mouse extensor digitorum longus and soleus muscle.
    Leijendekker WJ; Elzinga G
    Pflugers Arch; 1990 Apr; 416(1-2):22-7. PubMed ID: 2352837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How phosphocreatine buffers cyclic changes in ATP demand in working muscle.
    Funk C; Clark A; Connett RJ
    Adv Exp Med Biol; 1989; 248():687-92. PubMed ID: 2782182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production.
    Meis LD
    An Acad Bras Cienc; 2000 Sep; 72(3):365-79. PubMed ID: 11028101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.