BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26589407)

  • 1. Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors.
    Fayaz SM; Rajanikant GK
    J Mol Model; 2015 Dec; 21(12):314. PubMed ID: 26589407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble pharmacophore meets ensemble docking: a novel screening strategy for the identification of RIPK1 inhibitors.
    Fayaz SM; Rajanikant GK
    J Comput Aided Mol Des; 2014 Jul; 28(7):779-94. PubMed ID: 24980648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel RIPK3 inhibitors discovered through a structure-based approach exert post-ischemic neuroprotection.
    Fayaz SM; Suvanish Kumar VS; Davis CK; Rajanikant GK
    Mol Divers; 2016 Aug; 20(3):719-28. PubMed ID: 26873246
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zhang H; Xu L; Qin X; Chen X; Cong H; Hu L; Chen L; Miao Z; Zhang W; Cai Z; Zhuang C
    J Med Chem; 2019 Jul; 62(14):6665-6681. PubMed ID: 31095385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1.
    Najjar M; Suebsuwong C; Ray SS; Thapa RJ; Maki JL; Nogusa S; Shah S; Saleh D; Gough PJ; Bertin J; Yuan J; Balachandran S; Cuny GD; Degterev A
    Cell Rep; 2015 Mar; 10(11):1850-60. PubMed ID: 25801024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis.
    Kearney CJ; Cullen SP; Clancy D; Martin SJ
    FEBS J; 2014 Nov; 281(21):4921-34. PubMed ID: 25195660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring closure strategy leads to potent RIPK3 inhibitors.
    Wu S; Xu C; Xia K; Lin Y; Tian S; Ma H; Ji Y; Zhu F; He S; Zhang X
    Eur J Med Chem; 2021 May; 217():113327. PubMed ID: 33730678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.
    Zhuang C; Chen F
    J Med Chem; 2020 Feb; 63(4):1490-1510. PubMed ID: 31622096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIPK1 inhibits ZBP1-driven necroptosis during development.
    Newton K; Wickliffe KE; Maltzman A; Dugger DL; Strasser A; Pham VC; Lill JR; Roose-Girma M; Warming S; Solon M; Ngu H; Webster JD; Dixit VM
    Nature; 2016 Dec; 540(7631):129-133. PubMed ID: 27819682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and evaluation of potent RIPK1 inhibitors with in vivo anti-inflammatory activity.
    Li Z; Hao Y; Yang C; Yang Q; Wu S; Ma H; Tian S; Lu H; Wang J; Yang T; He S; Zhang X
    Eur J Med Chem; 2022 Jan; 228():114036. PubMed ID: 34906762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation.
    Shindo R; Kakehashi H; Okumura K; Kumagai Y; Nakano H
    Biochem Biophys Res Commun; 2013 Jun; 436(2):212-6. PubMed ID: 23727581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis.
    Newton K; Dugger DL; Wickliffe KE; Kapoor N; de Almagro MC; Vucic D; Komuves L; Ferrando RE; French DM; Webster J; Roose-Girma M; Warming S; Dixit VM
    Science; 2014 Mar; 343(6177):1357-60. PubMed ID: 24557836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RIPK1 and RIPK3: critical regulators of inflammation and cell death.
    Newton K
    Trends Cell Biol; 2015 Jun; 25(6):347-53. PubMed ID: 25662614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8.
    Vo DK; Urano Y; Takabe W; Saito Y; Noguchi N
    Steroids; 2015 Jul; 99(Pt B):230-7. PubMed ID: 25697054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking.
    Lang CA; Ray SS; Liu M; Singh AK; Cuny GD
    Bioorg Med Chem Lett; 2015 Jul; 25(13):2713-9. PubMed ID: 25998502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnapShot: Necroptosis.
    Zhou W; Yuan J
    Cell; 2014 Jul; 158(2):464-464.e1. PubMed ID: 25036639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of simplified benzazole fragments derived from the marine benzosceptrin B as necroptosis inhibitors involving the receptor interacting protein Kinase-1.
    Benchekroun M; Ermolenko L; Tran MQ; Vagneux A; Nedev H; Delehouzé C; Souab M; Baratte B; Josselin B; Iorga BI; Ruchaud S; Bach S; Al-Mourabit A
    Eur J Med Chem; 2020 Sep; 201():112337. PubMed ID: 32659605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Necroptosis and Inflammation.
    Newton K; Manning G
    Annu Rev Biochem; 2016 Jun; 85():743-63. PubMed ID: 26865533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective virtual screening strategy focusing on the identification of novel Bruton's tyrosine kinase inhibitors.
    Xiao J; Zhang S; Luo M; Zou Y; Zhang Y; Lai Y
    J Mol Graph Model; 2015 Jul; 60():142-54. PubMed ID: 26043662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacophore and molecular dynamics based activity profiling of natural products for kinases involved in lung cancer.
    Singh PK; Silakari O
    J Mol Model; 2018 Oct; 24(11):318. PubMed ID: 30343450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.